CSE 311: PRACTICE PROOF SOLUTIONS

Definitions

The following are definitions that will be useful in your proofs:
Def 1.1: Let $a, b \in \mathbb{Z}$. Then a divides \mathbf{b}, written $a \mid b$, if $\exists c \in \mathbb{Z}$ such that $b=a c$.
Def 1.2: We say an integer x is even if $x=2 k$ for some $k \in \mathbb{Z}$. An integer y is odd if $y=2 j+1$ for some $j \in \mathbb{Z}$.

Def 1.3: Let $a, b \in \mathbb{Z}$, and $n \in \mathbb{N}$. Then $a \equiv b(\bmod n) \leftrightarrow n \mid(a-b)$.
Def 1.4: Let A and B be sets. Then $A \subseteq B \leftrightarrow \forall x(x \in A \rightarrow x \in B)$.

Solutions

1. Let $A=\{x \in \mathbb{Z}: 18 \mid x\}$ and $B=\{x \in \mathbb{Z}: 6 \mid x\}$. Prove that $A \subseteq B$.

Proof. (Direct Proof: want to show $\forall x(x \in A \rightarrow x \in B)$.)
Let $x \in A$. Then by def. of $A, 18 \mid a$.
Thus $a=18 c$ for $c \in \mathbb{Z}$, by def. of integer division
$=6(3 c)$ by factoring, where $3 c \in \mathbb{Z}$ since $c \in \mathbb{Z}$.
Therefore, by definition of integer division, $6 \mid a$.
Thus $a \in B$ by def. of B.
We have shown $a \in A \rightarrow a \in B$, therefore $A \subseteq B$ by def. of a subset.
2. Show that if $x^{2}-6 x+5$ is even for $x \in \mathbb{Z}$, then \boldsymbol{x} is odd.

Proof. (By Contradiction: show that if we assume x is even, then we reach a contradiction.)

Let $x^{2}-6 x+5$ be even, and suppose x is also even.
Then by def. of even, $x=2 k$ for some $k \in \mathbb{Z}$.
$x^{2}-6 x+5=(2 k)^{2}-6(2 k)+5$ (by substitution) $=4 k^{2}-12 k+5$ (after squaring and distributing) $=2\left(2 k^{2}-6 k+2\right)+1$ (using distributive, associative laws)
Let $j=2 k^{2}-6 k+2$. Then $j \in \mathbb{Z}$ since $k \in \mathbb{Z}$.
Thus $x^{2}-6 x+5=2 j+1$ for $j \in \mathbb{Z}$, so $x^{2}-6 x+5$ is odd by definition.
However, this is a contradiction because by hypothesis, $x^{2}+6 x+5$ is even.
Therefore our assumption that x is even must be false, hence x is odd.

3. Prove that if $x \equiv 14(\bmod 25)$, then $x \equiv 4(\bmod 5)$.

Proof. (Direct proof: show $\forall x(x \equiv 14(\bmod 25) \rightarrow x \equiv 4(\bmod 5))$
Let $a \equiv 14(\bmod 25)$.
Then $25 \mid(a-14)$ by definition of modular equivalence, and so $a=25 k+14$ for $k \in \mathbb{Z}$ by applying the def. of integer division and rearranging by algebra.

We can apply distributive and associative properties to get

$$
\begin{aligned}
a & =25 k+14 \\
& =5(5 k)+10+4 \\
& =5(5 k+2)+4
\end{aligned}
$$

where $5 k+2 \in \mathbb{Z}$ because $k \in \mathbb{Z}$.
Therefore after rearranging and applying the def. of integer division again, we get $5 \mid(a-4)$,
thus $a \equiv 4(\bmod 5)$ by definition of modular equivalence.
4. Suppose $B \neq \emptyset$ and $A \times B \subseteq B \times C$. Prove $A \subseteq C$.

Proof. (Direct Proof: show $\forall x(x \in A \rightarrow x \in C)$)
Let $a \in A$ and $B \neq \emptyset$, where $A \times B \subseteq B \times C$.
Since $B \neq \emptyset, \exists b \in B$. So $(a, b) \in A \times B$ by definition of the Cartesian product. $A \times B \subseteq B \times C$, so $(a, b) \in B \times C$ by definition of subset.
Therefore $a \in B$ by definition of the Cartesian product, so $(x, a) \in A \times B$ for some $x \in A$ (note that x could equal a since we have just shown $A \subseteq B$).

Similarly, $A \times B \subseteq B \times C \rightarrow(x, a) \in B \times C$ by definition of subset, and thus $(x, a) \in B \times C \rightarrow a \in C$ by definition of Cartesian product.

Since we have shown that a generic $a \in A \rightarrow a \in C$, then we have that $A \subseteq C$ and we have reached our conclusion.

