CSE 311: PRACTICE PROOF SOLUTIONS

Definitions

The following are definitions that will be useful in your proofs:

Def 1.1: Let $a, b \in \mathbb{Z}$. Then **a divides b**, written a|b, if $\exists c \in \mathbb{Z}$ such that b = ac.

Def 1.2: We say an integer x is **even** if x = 2k for some $k \in \mathbb{Z}$. An integer y is **odd** if y = 2j + 1 for some $j \in \mathbb{Z}$.

Def 1.3: Let $a, b \in \mathbb{Z}$, and $n \in \mathbb{N}$. Then $a \equiv b \pmod{n} \leftrightarrow n \mid (a - b)$.

Def 1.4: Let A and B be sets. Then $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$.

Solutions

1. Let $A = \{x \in \mathbb{Z} : 18 | x\}$ and $B = \{x \in \mathbb{Z} : 6 | x\}$. Prove that $A \subseteq B$.

Proof. (Direct Proof: want to show $\forall x (x \in A \to x \in B)$.) Let $x \in A$. Then by def. of A, 18|a. Thus a = 18c for $c \in \mathbb{Z}$, by def. of integer division = 6(3c) by factoring, where $3c \in \mathbb{Z}$ since $c \in \mathbb{Z}$. Therefore, by definition of integer division, 6|a. Thus $a \in B$ by def. of B. We have shown $a \in A \to a \in B$, therefore $A \subseteq B$ by def. of a subset.

2. Show that if $x^2 - 6x + 5$ is even for $x \in \mathbb{Z}$, then x is odd.

Proof. (By Contradiction: show that if we assume x is even, then we reach a contradiction.)

Let $x^2 - 6x + 5$ be even, and suppose x is also even. Then by def. of even, x = 2k for some $k \in \mathbb{Z}$. $x^2 - 6x + 5 = (2k)^2 - 6(2k) + 5$ (by substitution) $= 4k^2 - 12k + 5$ (after squaring and distributing) $= 2(2k^2 - 6k + 2) + 1$ (using distributive, associative laws) Let $j = 2k^2 - 6k + 2$. Then $j \in \mathbb{Z}$ since $k \in \mathbb{Z}$. Thus $x^2 - 6x + 5 = 2j + 1$ for $j \in \mathbb{Z}$, so $x^2 - 6x + 5$ is odd by definition. However, this is a contradiction because by hypothesis, $x^2 + 6x + 5$ is even. Therefore our assumption that x is even must be false, hence x is odd.

3. Prove that if $x \equiv 14 \pmod{25}$, then $x \equiv 4 \pmod{5}$.

Proof. (Direct proof: show $\forall x (x \equiv 14 \pmod{25}) \rightarrow x \equiv 4 \pmod{5}$) Let $a \equiv 14 \pmod{25}$.

 $a \equiv 14 \pmod{25}.$

Then 25|(a-14) by definition of modular equivalence, and so a = 25k + 14 for $k \in \mathbb{Z}$ by applying the def. of integer division and rearranging by algebra.

We can apply distributive and associative properties to get

$$a = 25k + 14 = 5(5k) + 10 + 4 = 5(5k + 2) + 4$$

where $5k + 2 \in \mathbb{Z}$ because $k \in \mathbb{Z}$.

Therefore after rearranging and applying the def. of integer division again, we get 5|(a-4),

thus $a \equiv 4 \pmod{5}$ by definition of modular equivalence.

4. Suppose $B \neq \emptyset$ and $A \times B \subseteq B \times C$. Prove $A \subseteq C$.

Proof. (Direct Proof: show $\forall x (x \in A \rightarrow x \in C)$)

Let $a \in A$ and $B \neq \emptyset$, where $A \times B \subseteq B \times C$.

Since $B \neq \emptyset$, $\exists b \in B$. So $(a, b) \in A \times B$ by definition of the Cartesian product. $A \times B \subseteq B \times C$, so $(a, b) \in B \times C$ by definition of subset.

Therefore $a \in B$ by definition of the Cartesian product, so $(x, a) \in A \times B$ for some $x \in A$ (note that x could equal a since we have just shown $A \subseteq B$).

Similarly, $A \times B \subseteq B \times C \to (x, a) \in B \times C$ by definition of subset, and thus $(x, a) \in B \times C \to a \in C$ by definition of Cartesian product.

Since we have shown that a generic $a \in A \to a \in C$, then we have that $A \subseteq C$ and we have reached our conclusion.