CSE 311 Quiz Section: October 18, 2012 (Solutions)

2 More on sets.

Prove that $A \subseteq B \leftrightarrow \bar{B} \subseteq \bar{A}$.
Proof. (For a biconditional statement $P \leftrightarrow Q$, we must show both that $P \rightarrow Q$ and $Q \rightarrow P$ in order to complete the proof.)
(\rightarrow) Let $A \subseteq B$, and suppose $x \in \bar{B}$.
Then $x \notin B$ by definition of set complements.
Since $A \subseteq B$, then $\forall y(y \in A \rightarrow y \in B)$, or $\forall y(y \notin B \rightarrow y \notin A)$ [contrapositive], so it follows that $x \notin A$.
Therefore $x \in \bar{A}$ by def. of set complements.
Since we have shown that $x \in \bar{B} \rightarrow x \in \bar{A}$, then $\bar{B} \subseteq \bar{A}$ by definition of subset.
(\leftarrow) Let $\bar{B} \subseteq \bar{A}$, and suppose $x \in A$. By a symmetrical argument, $x \in B$. Thus $A \subseteq B$.

3 Memories of functions.

For all functions and mappings below, state whether they are injective (one-to-one), surjective (onto), or bijective (both) over the following sets:

$$
\begin{aligned}
& A=\{x \mid x \in \mathbb{R}, x \geq 1\} \\
& B=\{x \mid x \in \mathbb{R}, 0 \leq x \leq 1\} \\
& C=\{x \mid x \in \mathbb{R},-1 \leq x \leq 1\}
\end{aligned}
$$

1. $f: A \rightarrow B, f(x)=\frac{1}{x}$

Answer: Injective, but not surjective ($0 \in B$, but $\frac{1}{x} \neq 0 \forall x \in A$.)
2. $f: B \rightarrow C, f(x)=x^{2}$

Answer: Injective, but not surjective ($-1 \in C$, but $x^{2} \neq-1 \forall x \in B$.)
3. $f: B \rightarrow B, f(x)=x^{2}$

Answer: Both one-to-one and onto, so bijective. (No negatives to worry about in this case, so we don't have the same problem as 2 for surjective or the same problem as 4 for injective.)
4. $f: C \rightarrow B, f(x)=x^{2}$

Answer: Surjective, but not injective. $(f(-1)=f(1)=1$, but $-1 \neq 1)$

4 Modular Arithmetic.

Find $a \in \mathbb{Z}$ such that:

1. $a \equiv 43(\bmod 23),-22 \leq a \leq 0$

Answer: $a=-3$ (we can check by seeing that $23 \mid(43-(-3))$)
2. $a \equiv 17(\bmod 29),-14 \leq a \leq 14$

Answer: $a=-12$ (we can check by seeing that $29 \mid(17-(-12))$)
3. $a \equiv-11(\bmod 21), 90 \leq a \leq 110$

Answer: $a=94$ (we can check by seeing that $21 \mid(94-(-11))$)

