CSE 311 Quiz Section: October 18, 2012 (Solutions)

2 More on sets.

Prove that $A \subseteq B \leftrightarrow \overline{B} \subseteq \overline{A}$.

Proof. (For a biconditional statement $P \leftrightarrow Q$, we must show both that $P \rightarrow Q$ and $Q \rightarrow P$ in order to complete the proof.)

 (\rightarrow) Let $A \subseteq B$, and suppose $x \in \overline{B}$. Then $x \notin B$ by definition of set complements. Since $A \subseteq B$, then $\forall y (y \in A \rightarrow y \in B)$, or $\forall y (y \notin B \rightarrow y \notin A)$ [contrapositive], so it follows that $x \notin A$. Therefore $x \in \overline{A}$ by def. of set complements. Since we have shown that $x \in \overline{B} \rightarrow x \in \overline{A}$, then $\overline{B} \subseteq \overline{A}$ by definition of subset.

 (\leftarrow) Let $\overline{B} \subseteq \overline{A}$, and suppose $x \in A$. By a symmetrical argument, $x \in B$. Thus $A \subseteq B$.

3 Memories of functions.

For all functions and mappings below, state whether they are injective (one-to-one), surjective (onto), or bijective (both) over the following sets:

 $A = \{x | x \in \mathbb{R}, x \ge 1\}$ $B = \{x | x \in \mathbb{R}, 0 \le x \le 1\}$ $C = \{x | x \in \mathbb{R}, -1 \le x \le 1\}$

1. $f: A \to B$, $f(x) = \frac{1}{x}$

Answer: Injective, but not surjective $(0 \in B, \text{ but } \frac{1}{x} \neq 0 \ \forall x \in A.)$

2. $f: B \to C$, $f(x) = x^2$

Answer: Injective, but not surjective $(-1 \in C, \text{ but } x^2 \neq -1 \ \forall x \in B.)$ 3. $f: B \to B$, $f(x) = x^2$

Answer: Both one-to-one and onto, so bijective. (No negatives to worry about in this case, so we don't have the same problem as 2 for surjective or the same problem as 4 for injective.)

4. $f: C \to B$, $f(x) = x^2$

Answer: Surjective, but not injective. $(f(-1) = f(1) = 1, \text{ but } -1 \neq 1)$

4 Modular Arithmetic.

Find $a \in \mathbb{Z}$ such that:

1. $a \equiv 43 \pmod{23}$, $-22 \le a \le 0$ **Answer:** a = -3 (we can check by seeing that 23|(43 - (-3)))2. $a \equiv 17 \pmod{29}$, $-14 \le a \le 14$ **Answer:** a = -12 (we can check by seeing that 29|(17 - (-12)))3. $a \equiv -11 \pmod{21}$, $90 \le a \le 110$ **Answer:** a = 94 (we can check by seeing that 21|(94 - (-11)))

 $\mathbf{2}$