CSE 311 Quiz Section: November 29, 2012 (Solutions)

1 NFAs to DFAs

Convert the following NFA to a DFA.

Solution:

2 State minimization

Use the state minimization algorithm from lecture to minimize the following finite state machine.

Solution:

Regular Expressions to NFAs

Using the constructions given in lecture, find nondeterministic finite-state automata that recognize each of these sets:

a) 0*1*

Solution:

1) First, we create the machine for the regular expression 0:

2) Next, we apply the construction for A^* with our machine A = 0 from the previous step:

3) Similarly, we can create the machine for 1*:

4) Lastly, we use the construction for concatenation to connect 0* and 1*. Note that since our start state is also a final state in 0*, we must connect it to the start state for 1* with lambda and then make sure that it becomes a non-final state as well.

b) $(0 \cup 11)^*$ Solution:

4 FSAs to Regular Expressions Convert the following DFA to a regular expression.

Solution:

 $[11 \cup 00 \cup (10 \cup 01)(00 \cup 11)*(01 \cup 10)]*$