CSE 311 Quiz Section: November 29, 2012 (Solutions)

1 NFAs to DFAs

Convert the following NFA to a DFA.

Solution:

2 State minimization

Use the state minimization algorithm from lecture to minimize the following finite state machine.

Solution:

Regular Expressions to NFAs

Using the constructions given in lecture, find nondeterministic finite-state automata that recognize each of these sets:
a) $0^{*} 1^{*}$

Solution:

1) First, we create the machine for the regular expression 0 :

2) Next, we apply the construction for A^{*} with our machine $\mathrm{A}=0$ from the previous step:

3) Similarly, we can create the machine for 1^{*} :

4) Lastly, we use the construction for concatenation to connect 0^{*} and 1^{*}. Note that since our start state is also a final state in 0^{*}, we must connect it to the start state for 1^{*} with lambda and then make sure that it becomes a non-final state as well.

b) $(0 \cup 11)^{*}$

Solution:

4 FSAs to Regular Expressions

Convert the following DFA to a regular expression.

Solution:
$\left[11 \cup 00 \cup(10 \cup 01)(00 \cup 11)^{*}(01 \cup 10)\right]^{*}$

