University of Washington Department of Computer Science and Engineering CSE 311, Autumn 2012 September 28, 2012

Class example, September 28, 2012

The following example was covered very quickly at the end of the morning lecture. Here is a more complete solution.

Problem :

Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology by applying a series of equivalences to derive T.

Solution:

$$\begin{array}{ll} (p \wedge q) \rightarrow (p \vee q) \equiv \neg (p \wedge q) \vee (p \vee q) & \text{Law of Implication} \\ \equiv (\neg p \vee \neg q) \vee (p \vee q) & \text{DeMorgan's Law} \\ \equiv ((\neg p \vee \neg q) \vee p) \vee q & \text{Associative Law} \\ \equiv (p \vee (\neg p \vee \neg q)) \vee q & \text{Commutative Law} \\ \equiv ((p \vee \neg p) \vee \neg q)) \vee q & \text{Associative Law} \\ \equiv (T \vee \neg q)) \vee q & \text{Negation Law for } \vee \\ \equiv T & \text{Domination Law for } \vee \end{array}$$