CSE 311 Quiz Section: December 6, 2012

1 Determining Countability

Determine whether each of these sets is finite, countably infinite, or uncountable. For those that are countably infinite, exhibit a one-to-one correspondence between the set of positive integers and that set.
a) the integers that are multiples of 7
b) the integers less than 100
c) the real numbers between 0 and $\frac{1}{2}$
d) the real numbers not containing 0 in their decimal representations
e) all bit strings not containing the bit 0
f) all positive rational numbers that cannot be written with denominators less than 4

2 Sets and Countability

a) Show that if A and B are sets, A is uncountable, and $A \subseteq B$, then B is uncountable.
b) If A is an uncountable set and B is a countable set, must $A-B$ be uncountable?

