Homework 7, Due Wednesday, November 14, 2012

Problem 1:

Define T(n) for $n \ge 1$ by T(1) = 0, T(n+1) = T((n+1)/2) + 1 if $n \ge 1$ is odd and T(n+1) = T(n) if $n \ge 1$ is even. Prove that $2^{T(n)} \le n$ for all $n \ge 1$,

Problem 2:

Consider the following one-player game: The player starts with an integer $n \geq 1$.

If n = 1 the game stops and the player has not earned any points.

If n > 1 the player gets to split n into two positive integers r and n - r. For this move, the player earns $r \cdot (n - r)$ points. After this, the player plays the game both on r and on n - r, adding the points earned from those games to the points already earned.

Prove that no matter how the player plays on input $n \ge 1$, the player earns exactly n(n-1)/2 points.

Problem 3:

In class we gave the following recursive definition of a set S:

Basis: $[1, 1, 0] \in S$ and $[0, 1, 1] \in S$.

Recursive Step: If $[x_1, y_1, z_1] \in S$ and $[x_2, y_2, z_2] \in S$ then $[x_1 + x_2, y_1 + y_2, z_1 + z_2] \in S$ and $[\alpha x_1, \alpha y_1, \alpha z_1] \in S$ for every $\alpha \in \mathbb{R}$.

Prove that for every $[x, y, z] \in S$ we have y = x + z.

Problem 4:

The set of almost balanced binary trees is a subset of all rooted binary trees and is defined in the same way as rooted binary trees except that the recursive step has an extra restriction:

In an almost balanced binary tree, one can only join trees T_1 and T_2 as in the rooted binary tree definition if either $\mathbf{height}(T_1) = \mathbf{height}(T_2)$ or $\mathbf{height}(T_1)$ and $\mathbf{height}(T_2)$ differ by 1. The functions size and \mathbf{height} are defined exactly as for rooted binary trees.

Prove by induction that every almost balanced binary tree T satisfies $\operatorname{size}(T) \geq f_{\operatorname{height}(T)+1}$ where f_m denotes the m-th Fibonacci number. (As usual $f_0 = 0$, $f_1 = 1$, and $f_{m+1} = f_m + f_{m-1}$ for $m \geq 1$.)

Problem 5:

Construct regular expressions that match (generate) each of the following sets of strings.

- a) The set of all binary strings that start with 0 and have even length, or start with 1 and have odd length.
- b) The set of all binary strings that have a 1 in every odd-numbered position counting from the start of the string.

Problem 6:

Construct regular expressions that match (generate) each of the following sets of strings.

- a) The set of all binary strings that contain at least two 0's and at most one 1.
- b) The set of all binary strings that don't contain 110.

Problem 7:

Construct context-free grammars that generate the following sets of strings. For each of your constructions write a sentence or two to explain why your construction is correct. If you use more than one variable, as documentation explain what sets of strings you expect each variable to generate.

- a) The set of all binary strings that contain at least two 0's and at most one 1.
- b) The set of all binary strings that are of odd length and have 0 as their middle character.

Problem 8:

If $a \in \Sigma$ is a symbol then the string a^n for $n \ge 0$ is the string consisting of n copies of a, one after another. Construct context-free grammars that generate the following sets of strings. For each of your constructions write a sentence or two to explain why your construction is correct. If you use more than one variable, as documentation explain what sets of strings you expect each variable to generate.

- a) $\{0^m 1^n 0^{m+n} : m, n \ge 0\}.$
- b) $\{0^m 1^n 0^p : m, n, p \ge 0 \text{ and } m = n \text{ or } n = p\}.$

Extra Credit 9:

Consider the set S_3 of strings in $\{0, 1, 2\}^*$ such that the sum of the values is congruent to 0 modulo 3, so

$$S_3 = \{\lambda, 0, 00, 12, 21, 000, 012, 021, 102, 111, 120, 201, 210, 222, \cdots\}.$$

- a) Design a context-free grammar that generates S_3 .
- b) Design a regular expression that generates S_3 .