Problem 1:

Compute the GCD of 89 and 144 using the Euclidean Algorithm. Show the intermediate values that are computed. Do you recognize them?

Problem 2:

Prove that for every integer n, there are n consecutive composite integers. [Hint: Consider the n consecutive integers starting with $(n+1)!+2$.]

Problem 3:

Determine modular inverses for the following. Use the Euclidian algorithm to find the inverses. The inverses you give should be postive:
a) Find an inverse of 4 modulo 9 .
b) Find an inverse of 5 modulo 14 .
c) Find an inverse of 5 modulo 26 .

Problem 4:

How many zeros are at the end of 200!. Justify your answer without computing 200!.

Problem 5:

Prove that for every positive integer n,

$$
\sum_{k=1}^{n} k 2^{k}=(n-1) 2^{n+1}+2
$$

Problem 6:

Prove that 3 divides $n^{3}+2 n$ when n is a positive integer.

Problem 7:

Let x be any fixed real number with $x \geq-1$. Prove that $(1+x)^{n} \geq 1+n x$ for every integer $n \geq 0$.

Extra Credit 8:

Two integers a and b are relatively prime if and only if $\operatorname{gcd}(a, b)=1$. Consider any $n+1$ numbers between 1 and $2 n$ (inclusive). Show that some pair of them are relatively prime.

