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What we will munch on today…

 Turing Machines

 Church-Turing Thesis

 Unsolvable Problems

 Sections 12.5 and 3.1 in the text

Guest appearance
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How do Turing Machines compute?

 f(current state, symbol under the head) = (next state, symbol 

to write over current symbol, direction of head movement)

 5-tuple representation: (s1, 1, s2, 0, L) (R = right, L = left)

 Turing machine “program” = set of such 5-tuples
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Turing Machine (TM) Definition

 TM T = (S, V, I, f, s0, F) 
 NOTE: We will use V and F in our definition of TMs; the textbook 

does not. Using V makes the input alphabet clear and distinct from 

tape alphabet I. Using F makes the final/accepting states clear. 

 S, s0, F are as in DFA definition

 Input strings are over an alphabet V  I.
 TM can use other symbols in I as markers, etc. for computing.

 Blank symbol is always in I (and not in V).

 f maps (state1, symbol1) to (state2, symbol2, direction)
 f need not be defined for every (state,symbol) input 

 f is a “partial function”

 If f not defined for a particular (state,symbol), TM halts.
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Turing Machine (TM) Details

 Input string to TM given on tape
 TM always starts on leftmost nonblank symbol 

 If no input, then can start on any cell of the tape

 TM can halt in two types of states:
 TM halts and accepts the input iff it enters a final state in F

 TM halts and rejects the input when it halts in any other state (when f is 

not defined for a (state, symbol) pair)

 TM recognizes a string w iff it halts in a final state for w
 TM can reject w by halting in any non-final state or by looping 

forever!
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 TM that recognizes L = {anbncn | n  0} and always halts
 Such TMs are called decider TMs.

Solving Problems with Turing Machines

aaabbbccc 

xaabbbccc

xaaybbccc

xaaybbzcc

xxaybbzcc

….

xxxyyyzzz

Idea: Mark off each a, b, 

and c with x, y, z. Accept 

if each a, b, c could be 

matched, and only 

x’s,y’s,z’s remain

Input: aaabbbccc
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TM for {anbncn | n  0} 

 Implementation Level Description of the TM: 

On input w:

1. If first symbol = blank, ACCEPT

2. If first symbol = b or c, REJECT

3. If first symbol = a, 

a. Write X over a and move right.

b. If current symbol is a or y, move right until you see b. REJECT if 

other symbol.

c. Write y over b. Skip b’s and z’s until you see c. REJECT if other 

symbol.

d. Write z over c. Rewind back to rightmost x.

4. If you see an a, go to 3a.  If you see y, rewind and check if the tape 

only has x’s, y’s, z’s. If so, ACCEPT, otherwise REJECT.
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jFLAP demo

 To run the demo, download  and run in jFLAP the file 

turingAnBnCn.jff at:
http://www.cs.duke.edu/csed/jflap/tutorial/turing/one/turingAnBnCn.jff
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Can we augment the power of 

Turing machines with various 

accessories?

jFLAP/jFLAP.jar
http://www.cs.duke.edu/csed/jflap/tutorial/turing/one/turingAnBnCn.jff
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Varieties of TMs

What if we 

allow 

nondeterminism

?

What if we 

allow multiple 

tapes?

What if my 

date doesn’t 

show up 

tonight?
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Various Types of TMs

 Multi-Tape TMs: TM with k tapes and k heads

 f: S  Ik  S  Ik  {L,R}k

 f(si, a1, …, ak) = (sj, b1, …, bk, L, R, …, L) 

 Nondeterministic TMs (NTMs)

 f: S  I  Pow(S  I  {L,R})

 f(si, a) = {(s1, b, R), (s2, c, L), …, (sm, d, R)}

 Other types: TM with multiple heads on a single tape, 2D 

infinite tape TM, Random Access Memory (RAM) TM, etc.
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Surprise! 

All TMs are born equal…

 Each of the preceding TMs is equivalent to the standard TM

 They recognize the same set of languages

 Proof idea: Simulate the “deviant” TM using a standard TM

 Example: Multi-tape TM on a standard TM
 Represent k tapes sequentially on 1 tape using separators #

 Use new symbol a to denote a head currently on symbol a

0 1  . . . . . . . . . . .

b a h . . . . . . . . . .

3 1 1 . . . . . . . . . .

 # 0 1 # b a h # 3 1 1 # . . . . . . .
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The Church-Turing Thesis

 Various definitions of “algorithms” were shown to be 

equivalent in the 1930s

 Church-Turing Thesis: “The intuitive notion of algorithms 

equals Turing machine algorithms”

 Turing machines serve as a precise formal model for the 

intuitive notion of an algorithm

 “Any computation on a digital computer is equivalent to 

computation in a Turing machine”

Dude, that’s 

pretty deep…
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A language that can be recognized by a decider 

TM (always halts) is called a decidable

language

Some decidable languages:

{anbncn | n  0}, 

1*01*01* (or any reg. exp.), 

{0p } | p is prime}, 

{P | P is a syntactically correct Java program}

Decidable languages correspond to problems that we 

can solve using an algorithm (no infinite loops!)
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Are there languages that are not decidable?

(i.e., from Church-Turing thesis, 

are there problems that are not solvable 

by any computer program?
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The Halting Problem

 Consider problem: Given a program P and input w, does P halt 

on w?
 Equivalently, given TM M and input w, does M halt on w?

 Good for debugging CSE 142/143 programs…

 Naïve solution: What if we run P on w and see what happens?

But what if P is still 

running after 1 day, 

1 week,…?!!!!

If P halts, we 

say “yes”
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The Halting Problem is Unsolvable

 Theorem: There is no program which, when given as input a 

program P and its input w, decides whether P halts on w.

 Proof: By contradiction.

 Assume such a program exists – call it H.

Input 1: Program P

Input 2: Input w

H(P,w)

Output: 

“halts” if P halts on w

“loops” if P does not 
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The Halting Problem is Unsolvable

 If H exists, we can create a new program K which takes as 

input a program P and uses H as a subroutine as follows:
 On Input P, compute H(P,P). 

 If H(P,P) = “loops”, then K(P) halts. 

 If H(P,P) = “halts”, then K(P) loops forever. 

 Consider what happens when input P is K itself, i.e., K(K):
K loops on K  H(K,K) = “loops”  K(K) halts (contradiction)

K halts on K  H(K,K) = “halts”  K(K) loops (contradiction)

 Both cases give a contradiction

 Therefore, H cannot exist, i.e., halting problem is unsolvable.

QED
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The Chomsky Hierarchy – Then & Now…

Decidable

Undecidable

Then (1950s) Now

U.S. interventionism in

the developing world

Political economy 

of human rights

Propaganda role 

of corporate 

media

Halting problem

0n1n0n

REG
0*1*
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Dat raps up Turing Machines…

Let’s close with a tribute to 

da pumpin’ lemma
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Da Pumpin’ Lemma
(adapted from a poem by Harry Mairson)

Any regulah language L hassa magic numba p

Any long word s in L hasda followin’ propa’ty:

In its first p symbols    issa segment u can find

Whoz repetition or omission   leaves s amongst its kind.

If ya find a lango L which fails dis acid test,

And a long word ya pump   becomes distinct from all da rest,

By contradixion ya have shown   that L ain’t certainly not

A regular homie that is    resilient to da pumpin’ that  u’ve wrought. 

If on the otha’ hand,    s stays within its L,

Then eitha L is regulah,    or else ya chose not well.

s is xyz y’all     where y is not empty,

And y must come befo’ da     p+1st symbol ya see.

Based on: http://www.cs.brandeis.edu/~mairson/poems/node1.html

Hear it on the new album: 

Dig dat funky DFA

DT006-104-bpm.mp3

