
1R. Rao, CSE 311

What we will munch on today…

 Turing Machines

 Church-Turing Thesis

 Unsolvable Problems

 Sections 12.5 and 3.1 in the text

Guest appearance

2R. Rao, CSE 311

How do Turing Machines compute?

 f(current state, symbol under the head) = (next state, symbol

to write over current symbol, direction of head movement)

 5-tuple representation: (s1, 1, s2, 0, L) (R = right, L = left)

 Turing machine “program” = set of such 5-tuples

s0

s1

s2

s3

s0

s1

s2

s3

3R. Rao, CSE 311

Turing Machine (TM) Definition

 TM T = (S, V, I, f, s0, F)
 NOTE: We will use V and F in our definition of TMs; the textbook

does not. Using V makes the input alphabet clear and distinct from

tape alphabet I. Using F makes the final/accepting states clear.

 S, s0, F are as in DFA definition

 Input strings are over an alphabet V  I.
 TM can use other symbols in I as markers, etc. for computing.

 Blank symbol is always in I (and not in V).

 f maps (state1, symbol1) to (state2, symbol2, direction)
 f need not be defined for every (state,symbol) input

 f is a “partial function”

 If f not defined for a particular (state,symbol), TM halts.

4R. Rao, CSE 311

Turing Machine (TM) Details

 Input string to TM given on tape
 TM always starts on leftmost nonblank symbol

 If no input, then can start on any cell of the tape

 TM can halt in two types of states:
 TM halts and accepts the input iff it enters a final state in F

 TM halts and rejects the input when it halts in any other state (when f is

not defined for a (state, symbol) pair)

 TM recognizes a string w iff it halts in a final state for w
 TM can reject w by halting in any non-final state or by looping

forever!

5R. Rao, CSE 311

 TM that recognizes L = {anbncn | n  0} and always halts
 Such TMs are called decider TMs.

Solving Problems with Turing Machines

aaabbbccc

xaabbbccc

xaaybbccc

xaaybbzcc

xxaybbzcc

….

xxxyyyzzz

Idea: Mark off each a, b,

and c with x, y, z. Accept

if each a, b, c could be

matched, and only

x’s,y’s,z’s remain

Input: aaabbbccc

6R. Rao, CSE 311

TM for {anbncn | n  0}

 Implementation Level Description of the TM:

On input w:

1. If first symbol = blank, ACCEPT

2. If first symbol = b or c, REJECT

3. If first symbol = a,

a. Write X over a and move right.

b. If current symbol is a or y, move right until you see b. REJECT if

other symbol.

c. Write y over b. Skip b’s and z’s until you see c. REJECT if other

symbol.

d. Write z over c. Rewind back to rightmost x.

4. If you see an a, go to 3a. If you see y, rewind and check if the tape

only has x’s, y’s, z’s. If so, ACCEPT, otherwise REJECT.

7R. Rao, CSE 311

jFLAP demo

 To run the demo, download and run in jFLAP the file

turingAnBnCn.jff at:
http://www.cs.duke.edu/csed/jflap/tutorial/turing/one/turingAnBnCn.jff

8R. Rao, CSE 311

Can we augment the power of

Turing machines with various

accessories?

jFLAP/jFLAP.jar
http://www.cs.duke.edu/csed/jflap/tutorial/turing/one/turingAnBnCn.jff

9R. Rao, CSE 311

Varieties of TMs

What if we

allow

nondeterminism

?

What if we

allow multiple

tapes?

What if my

date doesn’t

show up

tonight?

10R. Rao, CSE 311

Various Types of TMs

 Multi-Tape TMs: TM with k tapes and k heads

 f: S  Ik  S  Ik  {L,R}k

 f(si, a1, …, ak) = (sj, b1, …, bk, L, R, …, L)

 Nondeterministic TMs (NTMs)

 f: S  I  Pow(S  I  {L,R})

 f(si, a) = {(s1, b, R), (s2, c, L), …, (sm, d, R)}

 Other types: TM with multiple heads on a single tape, 2D

infinite tape TM, Random Access Memory (RAM) TM, etc.

11R. Rao, CSE 311

Surprise!

All TMs are born equal…

 Each of the preceding TMs is equivalent to the standard TM

 They recognize the same set of languages

 Proof idea: Simulate the “deviant” TM using a standard TM

 Example: Multi-tape TM on a standard TM
 Represent k tapes sequentially on 1 tape using separators #

 Use new symbol a to denote a head currently on symbol a

0 1

b a h

3 1 1

 # 0 1 # b a h # 3 1 1 #

12R. Rao, CSE 311

The Church-Turing Thesis

 Various definitions of “algorithms” were shown to be

equivalent in the 1930s

 Church-Turing Thesis: “The intuitive notion of algorithms

equals Turing machine algorithms”

 Turing machines serve as a precise formal model for the

intuitive notion of an algorithm

 “Any computation on a digital computer is equivalent to

computation in a Turing machine”

Dude, that’s

pretty deep…

13R. Rao, CSE 311

A language that can be recognized by a decider

TM (always halts) is called a decidable

language

Some decidable languages:

{anbncn | n  0},

1*01*01* (or any reg. exp.),

{0p } | p is prime},

{P | P is a syntactically correct Java program}

Decidable languages correspond to problems that we

can solve using an algorithm (no infinite loops!)

14R. Rao, CSE 311

Are there languages that are not decidable?

(i.e., from Church-Turing thesis,

are there problems that are not solvable

by any computer program?

15R. Rao, CSE 311

The Halting Problem

 Consider problem: Given a program P and input w, does P halt

on w?
 Equivalently, given TM M and input w, does M halt on w?

 Good for debugging CSE 142/143 programs…

 Naïve solution: What if we run P on w and see what happens?

But what if P is still

running after 1 day,

1 week,…?!!!!

If P halts, we

say “yes”

16R. Rao, CSE 311

The Halting Problem is Unsolvable

 Theorem: There is no program which, when given as input a

program P and its input w, decides whether P halts on w.

 Proof: By contradiction.

 Assume such a program exists – call it H.

Input 1: Program P

Input 2: Input w

H(P,w)

Output:

“halts” if P halts on w

“loops” if P does not

17R. Rao, CSE 311

The Halting Problem is Unsolvable

 If H exists, we can create a new program K which takes as

input a program P and uses H as a subroutine as follows:
 On Input P, compute H(P,P).

 If H(P,P) = “loops”, then K(P) halts.

 If H(P,P) = “halts”, then K(P) loops forever.

 Consider what happens when input P is K itself, i.e., K(K):
K loops on K  H(K,K) = “loops”  K(K) halts (contradiction)

K halts on K  H(K,K) = “halts”  K(K) loops (contradiction)

 Both cases give a contradiction

 Therefore, H cannot exist, i.e., halting problem is unsolvable.

QED

18R. Rao, CSE 311

The Chomsky Hierarchy – Then & Now…

Decidable

Undecidable

Then (1950s) Now

U.S. interventionism in

the developing world

Political economy

of human rights

Propaganda role

of corporate

media

Halting problem

0n1n0n

REG
0*1*

19R. Rao, CSE 311

Dat raps up Turing Machines…

Let’s close with a tribute to

da pumpin’ lemma

20R. Rao, CSE 311

Da Pumpin’ Lemma
(adapted from a poem by Harry Mairson)

Any regulah language L hassa magic numba p

Any long word s in L hasda followin’ propa’ty:

In its first p symbols issa segment u can find

Whoz repetition or omission leaves s amongst its kind.

If ya find a lango L which fails dis acid test,

And a long word ya pump becomes distinct from all da rest,

By contradixion ya have shown that L ain’t certainly not

A regular homie that is resilient to da pumpin’ that u’ve wrought.

If on the otha’ hand, s stays within its L,

Then eitha L is regulah, or else ya chose not well.

s is xyz y’all where y is not empty,

And y must come befo’ da p+1st symbol ya see.

Based on: http://www.cs.brandeis.edu/~mairson/poems/node1.html

Hear it on the new album:

Dig dat funky DFA

DT006-104-bpm.mp3

