CSE 311: Foundations of Computing I Spring 2011
 Final exam - with solutions

1. Logic, proofs, sets and functions. (25 points; $5+10+10$)
(a) Prove or disprove: $\exists x \in \mathbb{R}^{+}, \forall y \in \mathbb{R}\left(y \geq x \rightarrow y^{2} \geq 2 y\right)$.
(b) Let $P(S)$ denote the power set of S; i.e. $P(S)=\{T: T \subseteq S\}$. Prove that $A \subseteq B$ if and only if $P(A) \subseteq P(B)$.
(c) Let S and T be subsets of a universal set U, and define $A_{0,0}=S \cap T, A_{0,1}=S \cap \bar{T}, A_{1,0}=\bar{S} \cap T$ and $A_{1,1}=\bar{S} \cap \bar{T}$. Express $S \cup T$ as a union of some or all of the $\left\{A_{0,0}, A_{0,1}, A_{1,0}, A_{1,1}\right\}$. You do not need to prove your answer. Hint: You may find a Venn diagram helpful, although it is not required.
(a) Choose $x=2$. Then we use a direct proof to show that $y \geq x \rightarrow y^{2} \geq 2 y$. Assume that $y \geq x=2$. Since $y \geq 0$, we can multiply both sides by y and still have a valid inequality: $y^{2} \geq 2 y$. QED
(b) For one direction, assume that $A \subseteq B$. We will use a direct proof to show that $\forall S(S \in P(A) \rightarrow$ $S \in P(B))$.

$$
\begin{array}{lr}
S \in P(A) & \text { by assumption } \\
S \subseteq A & \text { by the definition of a power set } \\
S \subseteq B & \text { using the fact that } A \subseteq B \\
S \in P(B) & \text { by the definition of a power set }
\end{array}
$$

Since $\forall S(S \in P(A) \rightarrow S \in P(B))$, we have that $P(A) \subseteq P(B)$.
For the other direction, assume that $P(A) \subseteq P(B)$.

$P(A)$	$\subseteq P(B)$
A	by assumption
A	set identity (this step could be skipped)
A	$\in P(B)$
A	definition of power set
	by (1) and (3)
	definition of power set

(c) $S \cup T=A_{0,0} \cup A_{0,1} \cup A_{1,0}$.
2. Number theory. (25 points; $5+10+10$)
(a) Use Euclid's algorithm to compute the gcd of 328 and 432. Write down the numbers you obtain at the intermediate steps.
(b) Prove that if $a, b \in \mathbb{Z}$ and $b>0$, then there exist unique $q, r \in \mathbb{Z}$ satisfying $a=b q-r$ (note the - here) and $0 \leq r<b$.
(c) One type of cicada living in the Eastern US has a lifecycle of 17 years, has appeared in 1970, 1987, 2004, and next will appear in 2021. Suppose that a parasite that attacks the cicadas has an n-year lifecycle, and also appeared in 1970, then $1970+n, 1970+2 n$, etc. Assume that $1 \leq n \leq 16$. If the cicadas and parasites both appeared in the same year in 1970, in what year will they next both appear?
(a)

$$
\begin{aligned}
432 & =1 \cdot 328+104 \\
328 & =3 \cdot 104+16 \\
104 & =6 \cdot 16+8 \\
16 & =2 \cdot 8+0
\end{aligned}
$$

The GCD is 8 .
(b) First we prove existence. Use the (conventional) division algorithm to obtain integers q^{\prime}, r^{\prime} such that $a=b q^{\prime}+r^{\prime}$ and $0 \leq r^{\prime}<b$. Define $r=b-r^{\prime}$ and $q=q^{\prime}+1$. Since $0 \leq r^{\prime}<b$, we also have $0 \leq r<b$. Also $b q-r=b\left(q^{\prime}+1\right)-\left(b-r^{\prime}\right)=b q^{\prime}+r^{\prime}=a$, so q, r are a valid solution. For uniqueness, we can either prove it directly (e.g. showing that two different valid pairs of q, r must be the same) or we can use the fact that this process can be run in reverse. To do this, suppose we are given some q, r satisfying $a=b q-r$ and $0 \leq r<b$. Then define $r^{\prime}=b-r$ and $q^{\prime}=q-1$. These satisfy $0 \leq r^{\prime}<b$ and $a=b q^{\prime}+r^{\prime}$, and so by the (conventional) division algorithm, the pair q^{\prime}, r^{\prime} are unique. Since the map from (q, r) to $\left(q^{\prime}, r^{\prime}\right)$ is one-to-one, this implies that q, r must be unique as well.
(c) $1970+17 n$.
3. Induction and recursion. (30 points; $10+20$)
(a) Prove using induction that $\sum_{k=1}^{n} k^{2}=n(n+1)(2 n+1) / 6$ for all positive integers n.
(b) Euclid's algorithm for computing the GCD of a pair of positive integers a, b is as follows:

```
EUCLID (a,b):
    If (a<b) return EUCLID(b,a)
    If b=0 return a
    Use the division algorithm to compute q, r\in\mathbb{Z such that }a=bq+r\mathrm{ and 0}\leqr<b}\mathrm{ .
    Return EUCLID(b,r)
```

Define $P(a)$ to the predicate that $\operatorname{EUCLID}(a, b)$ returns $g c d(a, b)$ for all $0 \leq b<a$. Use strong induction to prove that $\operatorname{EUCLID}(a, b)=g c d(a, b)$ for all positive integers a, b.
(a) Let $P(n)$ be the predicate that the stated identity holds for n. The base case is $P(1)$: we verify that $1^{2}=1(1+1)(2+1) / 6$. Assume that $P(k)$ holds for some integer $k \geq 1$. Then

$$
\begin{array}{rlr}
\sum_{j=1}^{k+1} j^{2} & =(k+1)^{2}+\sum_{j=1}^{k} j^{2} & \\
& =(k+1)^{2}+\frac{k(k+1)(2 k+1)}{6} & \\
& =(k+1) \frac{6(k+1)+k(2 k+1)}{6} & \\
& =(k+1) \frac{2 k^{2}+7 k+6}{6} & \\
& =(k+1) \frac{(k+2)(2 k+3)}{6} & \quad \text { induction hypothesis } \\
& =\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} &
\end{array}
$$

By induction $P(n)$ holds for all positive integers n.
(b) Base case: $P(1)$ is the statement that $\operatorname{EUCLID}(1,0)$ returns $\operatorname{gcd}(1,0)=1$, which is true. For the inductive step, assume $P(1) \wedge P(2) \cdots \wedge P(a)$. We will attempt to prove $P(a+1)$. For this, we use a direct proof. Assume that b is an integer satisfying $0 \leq b<a+1$. Consider the behavior of EUCLID when given inputs $(a+1, b)$.
If $b=0$, then it returns $a+1$, which equals $\operatorname{gcd}(a+1,0)$, so in this case $P(a+1)$ is true.
If $b>0$, then the algorithm computes q, r satisfying $a+1=b q+r, 0 \leq r<b$ and returns the result of running EUCLID on (b, r). Since $b<a+1$, the inductive hypothesis implies that $P(b)$ holds, and since $r<b$, this means that $\operatorname{EUCLID}(b, r)$ returns $\operatorname{gcd}(b, r)$. Next Lemma 1 of Section 3.6 of Rosen implies that $\operatorname{gcd}(b, r)=\operatorname{gcd}(a+1, b)$. This establishes $P(a+1)$, and so by strong induction, $\operatorname{EUCLID}(a, b)$ returns $\operatorname{gcd}(a, b)$ whenever $0 \leq b<a$.
If $b>a$, then the first line of EUCLID reduces this to the case when $b<a$.
Finally, if $a=b$, then the division step will obtain $r=0$, and EUCLID will return the value of EUCLID on $(b, 0)$, which is $b=\operatorname{gcd}(a, b)$.
Thus, EUCLID returns the gcd for all pairs of positive integers a, b.
4. Relations. (15 points; $5+10$)
(a) Define the rock-paper-scissors relation on $S=\{r, p, s\}$ by $R=\{(r, r),(p, p),(s, s),(p, r),(r, s),(s, p)\}$. Is this relation a partial order? Why or why not?
(b) Consider the relation R on \mathbb{R} given by $\{(x, y) \mid x-y \in \mathbb{Z}\}$.
i. Prove that R is an equivalence relation.
ii. What is the equivalence class of 1? What is the equivalence class of 0.5?
(a) It's not a partial order because it's not transitive: $(p, r) \in R \wedge(r, s) \in R$ but $(p, s) \notin R$. In English, paper beats-or-ties rock and rock beats-or-ties scissors, but paper does not beat or tie scissors.
(b) i. Reflexivity: $x \in \mathbb{R} \rightarrow x-x=0 \in \mathbb{Z}$. Symmetry: $(x, y) \in R \rightarrow x-y \in \mathbb{Z} \rightarrow y-x \in \mathbb{Z} \rightarrow$ $(y, x) \in R$. Transitivity: $((x, y) \in R \wedge(y, z) \in R) \rightarrow(x-y \in \mathbb{Z} \wedge y-z \in \mathbb{Z}) \rightarrow(x-z \in \mathbb{Z}) \rightarrow$ $((x, z) \in R)$.
ii. \mathbb{Z}. $\{z+1 / 2: z \in \mathbb{Z}\}$.
5. Graphs and trees. (15 points; $5+10$)
(a) Define the complete graph K_{n} to be the undirected graph on n vertices with no self-loops and with all possible edges present. Prove by induction that K_{n} has $\sum_{k=1}^{n-1} k$ edges.
(b) Draw a directed graph with four vertices such that the edges form a partial order. Your score on this question will be 1 point per edge that you draw, or 0 if what you draw isn't a partial order.
(a) Let $P(n)$ be the claim about $K_{n} . P(1)$ is true because K_{0} has no edges. Assume $P(k)$ is true for some $k \geq 1$. Consider an arbitrary vertex of K_{k}. It has $k-1$ edges to the other $k-1$ vertices. Remove this vertex and the $k-1$ edges and we are left with K_{k-1}, which by the inductive hypothesis has $\sum_{j=1}^{k-2} j$ edges. Thus K_{k} has $\sum_{j=1}^{k-2} j+(k-1)=\sum_{j=1}^{k-1} j$ edges.
(b) Consider the graph with vertices $\{1,2,3,4\}$ and edges $\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4$

Figure 1: A non-deterministic finite automaton.
6. Circuits and boolean algebra. (15 points) The goal of this problem is to prove that AND and OR are not functionally complete. Let x_{1}, \ldots, x_{n} be boolean variables for some $n \geq 1$. We say that a boolean function $F\left(x_{1}, \ldots, x_{n}\right)$ is monotone if

$$
\forall x_{1}, \ldots, x_{n} \in\{0,1\}, \forall i \in[n]\left(F\left(x_{1}, \ldots, x_{n}\right)=1 \rightarrow F\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)=1\right)
$$

In other words, if F equals 1 for some input, then changing one of those inputs to 1 will not change F.
(a) Suppose that $F\left(x_{1}, \ldots, x_{n}\right)$ is a boolean function constructed from $A N D$ and $O R$ gates. Prove, using structural induction, that F is monotone.
(b) Give an example of a boolean function that is not monotone.
(a) The base case is to consider a circuit that outputs simply x_{j} for some $j \in[n]$. This is monotone because if $x_{j}=1$ then setting some x_{i} to 1 (whether or not $i=j$) will not change this. For the inductive step, we note that an AND-OR circuit can be constructed from smaller AND-OR circuits by combining their output with an AND or an OR. Call the new AND-OR circuit F and the smaller ones G and H, so that either $F=G+H$ or $F=G H$. By the inductive hypothesis, we assume that G and H are monotone. Then changing one of the x_{i} 's to 1 will not change either G or H from 1 to 0 , which will not change F from 1 to 0 .
To make this more formal, we define $f=F\left(x_{1}, \ldots, x_{n}\right), f^{\prime}=F\left(x_{1}, \ldots, x_{i=1}, 1, x_{i+1}, \ldots x_{n}\right) g=$ $G\left(x_{1}, \ldots, x_{n}\right), g^{\prime}=G\left(x_{1}, \ldots, x_{i=1}, 1, x_{i+1}, \ldots x_{n}\right) h=H\left(x_{1}, \ldots, x_{n}\right), h^{\prime}=H\left(x_{1}, \ldots, x_{i=1}, 1, x_{i+1}, \ldots x_{n}\right)$. The first case is that $F=G H$ so that $f=g h$ and $f^{\prime}=g^{\prime} h^{\prime}$. In this case, $f=1$ if and only g and h are both 1 , and by the inductive hypothesis, this implies that g^{\prime} and h^{\prime} are both 1 , which means that $f^{\prime}=1$. The second case is that $F=G+H$ so that $f=g+h$ and $f^{\prime}=g^{\prime}+h^{\prime}$. In this case, $f=1$ implies that $g=1$ or $h=1$. By the inductive hypothesis, $g^{\prime}=1$ or $h^{\prime}=1$, and thus $f^{\prime}=1$.
(b) $F\left(x_{1}\right)=\bar{x}_{1}$.
7. Turing Machines and Finite state machines. (25 points)
(a) Draw a DFA that accepts the same strings as the NFA in Figure 1.
(b) Construct a Turing machine that takes as input a binary string, and halts in an accepting state with the entire tape filled with blank symbols and with the tape head in its starting position.

Figure 2: 7a: A DFA corresponding to the NFA above. States with no incoming transitions have been omitted.

Figure 3: 7b: A Turing machine that erases a binary string and leaves the tape head where it started.

