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CSE 311: Foundations of Computing I
Spring 2011

Final exam - with solutions
1. Logic, proofs, sets and functions. (25 points; 5+10+10)

(a) Prove or disprove: ∃x ∈ R+,∀y ∈ R(y ≥ x→ y2 ≥ 2y).

(b) Let P (S) denote the power set of S; i.e. P (S) = {T : T ⊆ S}. Prove that A ⊆ B if and only if
P (A) ⊆ P (B).

(c) Let S and T be subsets of a universal set U , and define A0,0 = S ∩T , A0,1 = S ∩ T̄ , A1,0 = S̄ ∩T
and A1,1 = S̄ ∩ T̄ . Express S ∪ T as a union of some or all of the {A0,0, A0,1, A1,0, A1,1}. You do
not need to prove your answer. Hint: You may find a Venn diagram helpful, although it is not
required.

(a) Choose x = 2. Then we use a direct proof to show that y ≥ x→ y2 ≥ 2y. Assume that y ≥ x = 2.
Since y ≥ 0, we can multiply both sides by y and still have a valid inequality: y2 ≥ 2y. QED

(b) For one direction, assume that A ⊆ B. We will use a direct proof to show that ∀S (S ∈ P (A)→
S ∈ P (B)).

S ∈ P (A) by assumption
S ⊆ A by the definition of a power set
S ⊆ B using the fact that A ⊆ B

S ∈ P (B) by the definition of a power set

Since ∀S (S ∈ P (A)→ S ∈ P (B)), we have that P (A) ⊆ P (B).
For the other direction, assume that P (A) ⊆ P (B).

P (A) ⊆ P (B) by assumption (1)
A ⊆ A set identity (this step could be skipped) (2)
A ∈ P (A) definition of power set (3)
A ∈ P (B) by (1) and (3) (4)
A ⊆ B definition of power set (5)

(c) S ∪ T = A0,0 ∪A0,1 ∪A1,0.

2. Number theory.(25 points; 5+10+10)

(a) Use Euclid’s algorithm to compute the gcd of 328 and 432. Write down the numbers you obtain
at the intermediate steps.

(b) Prove that if a, b ∈ Z and b > 0, then there exist unique q, r ∈ Z satisfying a = bq − r (note the
− here) and 0 ≤ r < b.

(c) One type of cicada living in the Eastern US has a lifecycle of 17 years, has appeared in 1970, 1987,
2004, and next will appear in 2021. Suppose that a parasite that attacks the cicadas has an n-year
lifecycle, and also appeared in 1970, then 1970 + n, 1970 + 2n, etc. Assume that 1 ≤ n ≤ 16. If
the cicadas and parasites both appeared in the same year in 1970, in what year will they next both
appear?

1



Name Student ID

(a)

432 = 1 · 328 + 104
328 = 3 · 104 + 16
104 = 6 · 16 + 8
16 = 2 · 8 + 0

The GCD is 8.
(b) First we prove existence. Use the (conventional) division algorithm to obtain integers q′, r′ such

that a = bq′ + r′ and 0 ≤ r′ < b. Define r = b − r′ and q = q′ + 1. Since 0 ≤ r′ < b, we also
have 0 ≤ r < b. Also bq − r = b(q′ + 1)− (b− r′) = bq′ + r′ = a, so q, r are a valid solution. For
uniqueness, we can either prove it directly (e.g. showing that two different valid pairs of q, r must
be the same) or we can use the fact that this process can be run in reverse. To do this, suppose
we are given some q, r satisfying a = bq− r and 0 ≤ r < b. Then define r′ = b− r and q′ = q− 1.
These satisfy 0 ≤ r′ < b and a = bq′ + r′, and so by the (conventional) division algorithm, the
pair q′, r′ are unique. Since the map from (q, r) to (q′, r′) is one-to-one, this implies that q, r must
be unique as well.

(c) 1970 + 17n.

3. Induction and recursion. (30 points; 10+20)

(a) Prove using induction that
∑n

k=1 k2 = n(n + 1)(2n + 1)/6 for all positive integers n.
(b) Euclid’s algorithm for computing the GCD of a pair of positive integers a, b is as follows:

EUCLID(a, b):
If (a < b) return EUCLID(b, a)
If b = 0 return a
Use the division algorithm to compute q, r ∈ Z such that a = bq + r and 0 ≤ r < b.
Return EUCLID(b, r)

Define P (a) to the predicate that EUCLID(a, b) returns gcd(a, b) for all 0 ≤ b < a. Use strong
induction to prove that EUCLID(a, b) =gcd(a, b) for all positive integers a, b.

(a) Let P (n) be the predicate that the stated identity holds for n. The base case is P (1): we verify
that 12 = 1(1 + 1)(2 + 1)/6. Assume that P (k) holds for some integer k ≥ 1. Then

k+1∑
j=1

j2 = (k + 1)2 +
k∑

j=1

j2

= (k + 1)2 +
k(k + 1)(2k + 1)

6
induction hypothesis

= (k + 1)
6(k + 1) + k(2k + 1)

6

= (k + 1)
2k2 + 7k + 6

6

= (k + 1)
(k + 2)(2k + 3)

6

=
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
implying P (k + 1)

By induction P (n) holds for all positive integers n.
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(b) Base case: P (1) is the statement that EUCLID(1,0) returns gcd(1, 0) = 1, which is true. For the
inductive step, assume P (1) ∧ P (2) · · · ∧ P (a). We will attempt to prove P (a + 1). For this, we
use a direct proof. Assume that b is an integer satisfying 0 ≤ b < a + 1. Consider the behavior of
EUCLID when given inputs (a + 1, b).
If b = 0, then it returns a + 1, which equals gcd(a + 1, 0), so in this case P (a + 1) is true.
If b > 0, then the algorithm computes q, r satisfying a + 1 = bq + r, 0 ≤ r < b and returns the
result of running EUCLID on (b, r). Since b < a + 1, the inductive hypothesis implies that P (b)
holds, and since r < b, this means that EUCLID(b, r) returns gcd(b, r). Next Lemma 1 of Section
3.6 of Rosen implies that gcd(b, r) = gcd(a + 1, b). This establishes P (a + 1), and so by strong
induction, EUCLID(a, b) returns gcd(a, b) whenever 0 ≤ b < a.
If b > a, then the first line of EUCLID reduces this to the case when b < a.
Finally, if a = b, then the division step will obtain r = 0, and EUCLID will return the value of
EUCLID on (b, 0), which is b = gcd(a, b).
Thus, EUCLID returns the gcd for all pairs of positive integers a, b.

4. Relations. (15 points; 5+10)

(a) Define the rock-paper-scissors relation on S = {r, p, s} by R = {(r, r), (p, p), (s, s), (p, r), (r, s), (s, p)}.
Is this relation a partial order? Why or why not?

(b) Consider the relation R on R given by {(x, y)|x− y ∈ Z}.
i. Prove that R is an equivalence relation.

ii. What is the equivalence class of 1? What is the equivalence class of 0.5?

(a) It’s not a partial order because it’s not transitive: (p, r) ∈ R ∧ (r, s) ∈ R but (p, s) 6∈ R. In
English, paper beats-or-ties rock and rock beats-or-ties scissors, but paper does not beat or tie
scissors.

(b) i. Reflexivity: x ∈ R → x − x = 0 ∈ Z. Symmetry: (x, y) ∈ R → x − y ∈ Z → y − x ∈ Z →
(y, x) ∈ R. Transitivity: ((x, y) ∈ R∧ (y, z) ∈ R)→ (x− y ∈ Z∧ y− z ∈ Z)→ (x− z ∈ Z)→
((x, z) ∈ R).

ii. Z. {z + 1/2 : z ∈ Z}.

5. Graphs and trees. (15 points; 5+10)

(a) Define the complete graph Kn to be the undirected graph on n vertices with no self-loops and with
all possible edges present. Prove by induction that Kn has

∑n−1
k=1 k edges.

(b) Draw a directed graph with four vertices such that the edges form a partial order. Your score on
this question will be 1 point per edge that you draw, or 0 if what you draw isn’t a partial order.

(a) Let P (n) be the claim about Kn. P (1) is true because K0 has no edges. Assume P (k) is true for
some k ≥ 1. Consider an arbitrary vertex of Kk. It has k − 1 edges to the other k − 1 vertices.
Remove this vertex and the k − 1 edges and we are left with Kk−1, which by the inductive
hypothesis has

∑k−2
j=1 j edges. Thus Kk has

∑k−2
j=1 j + (k − 1) =

∑k−1
j=1 j edges.

(b) Consider the graph with vertices {1, 2, 3, 4} and edges {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}.
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Figure 1: A non-deterministic finite automaton.

6. Circuits and boolean algebra. (15 points) The goal of this problem is to prove that AND and OR
are not functionally complete. Let x1, . . . , xn be boolean variables for some n ≥ 1. We say that a
boolean function F (x1, . . . , xn) is monotone if

∀x1, . . . , xn ∈ {0, 1}, ∀i ∈ [n] (F (x1, . . . , xn) = 1→ F (x1, . . . , xi−1, 1, xi+1, . . . , xn) = 1).

In other words, if F equals 1 for some input, then changing one of those inputs to 1 will not change
F .

(a) Suppose that F (x1, . . . , xn) is a boolean function constructed from AND and OR gates. Prove,
using structural induction, that F is monotone.

(b) Give an example of a boolean function that is not monotone.

(a) The base case is to consider a circuit that outputs simply xj for some j ∈ [n]. This is monotone
because if xj = 1 then setting some xi to 1 (whether or not i = j) will not change this. For
the inductive step, we note that an AND-OR circuit can be constructed from smaller AND-OR
circuits by combining their output with an AND or an OR. Call the new AND-OR circuit F and
the smaller ones G and H, so that either F = G + H or F = GH. By the inductive hypothesis,
we assume that G and H are monotone. Then changing one of the xi’s to 1 will not change either
G or H from 1 to 0, which will not change F from 1 to 0.
To make this more formal, we define f = F (x1, . . . , xn), f ′ = F (x1, . . . , xi=1, 1, xi+1, . . . xn) g =
G(x1, . . . , xn), g′ = G(x1, . . . , xi=1, 1, xi+1, . . . xn) h = H(x1, . . . , xn), h′ = H(x1, . . . , xi=1, 1, xi+1, . . . xn).
The first case is that F = GH so that f = gh and f ′ = g′h′. In this case, f = 1 if and only g
and h are both 1, and by the inductive hypothesis, this implies that g′ and h′ are both 1, which
means that f ′ = 1. The second case is that F = G + H so that f = g + h and f ′ = g′ + h′. In
this case, f = 1 implies that g = 1 or h = 1. By the inductive hypothesis, g′ = 1 or h′ = 1, and
thus f ′ = 1.

(b) F (x1) = x̄1.

7. Turing Machines and Finite state machines. (25 points)

(a) Draw a DFA that accepts the same strings as the NFA in Figure 1.

(b) Construct a Turing machine that takes as input a binary string, and halts in an accepting state
with the entire tape filled with blank symbols and with the tape head in its starting position.
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Figure 2: 7a: A DFA corresponding to the NFA above. States with no incoming transitions have been
omitted.

Figure 3: 7b: A Turing machine that erases a binary string and leaves the tape head where it started.
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