CSE 311: Foundations of Computing I Spring 2011 Midterm

Instructions

1. Start at the $1: 30 \mathrm{PM}$ bell and stop at the $2: 20 \mathrm{PM}$ bell.
2. There are 7 questions, worth a total of 100 points.
3. Write your name and student ID on the first sheet (once you start, write your last name on all sheets). Write or mark your answers in the space provided. If you need more space or scratch paper, additional sheets will be available. Make sure you write down the question number and your name on any additional sheets.
4. Tables for logical equivalences and inferences are included in the back.
5. You may bring in one double-sided sheet of notes. Apart from this, you may not use books, notes or calculators.
6. Suggestion: Skim all questions before starting, and answer the questions that seem easiest and fastest to answer first.
7. Suggestion: If you don't know the answer to a question, try to clearly write down what you know anyway, and you may still be able to get partial credit.
8. Sets (12 points)
(a) Let A, B, C be sets. Express $A-(B-C)$ using only symbols from this list: (,), $\cap, \cup, A, B, C, \bar{A}, \bar{B}, \bar{C}$.
(b) Prove or give a counter-example: for any sets $A, B,|P(A) \times P(B)|=|P(A \times B)|$. Here $P(S)$ is defined to be the power set of S, meaning $P(S)=\{T: T \subseteq S\}$.
9. Quantifiers (12 points)
(a) Prove or disprove: $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}(x+y=0)$.
(b) Prove or disprove: $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}(x+y=0)$.
10. Propositional logic (20 points)
(a) Show that $(\neg p \rightarrow q) \rightarrow p \equiv q \rightarrow p$ using logical equivalences from the table at the back of the exam. Use at most one equivalence per line.
(b) Construct a truth table for $(p \vee q) \wedge(q \rightarrow p)$. Is this a tautology, contradiction or contingency? Briefly indicate why.
11. Predicate logic (20 points)
(a) Let $A(x, y)$ be the predicate " x has read book y ", and $B(x, y, z)$ be the predicate " x prefers book y over book $z "$ where the domain of x is the set of all people, and the domain of y and z is the set of all books. Express the following statements using \forall, \exists, \neg.
i. There is a book that no one prefers over any other book.
ii. Anyone who has read any book has a book that they prefer over all other books.
(b) Express the negations of each of the following statements in a way such that \neg does not precede a \forall, \exists or (.
i. $\forall x(\exists y(A(x, y) \vee \exists z(A(x, z) \wedge \neg B(x, y, z))))$.
ii. $\exists y(\forall x(A(x, y) \rightarrow \forall z((y \neq z) \rightarrow B(x, y, z))))$.
12. Proof (12 points) Suppose $x_{1}, x_{2}, x_{3} \in \mathbb{R}$. Define the mean of these numbers to be

$$
\bar{x}:=\frac{x_{1}+x_{2}+x_{3}}{3}
$$

Prove that there exists $i \in\{1,2,3\}$ such that $x_{i} \geq \bar{x}$. Hint: try a proof by contradiction.
6. Functions (12 points) In each row, f is a function from $A \rightarrow B$. Mark Y / N to indicate whether f is surjective or injective. Briefly justify your answers.

A	B	f	surjective	injective
$\{0,1, \ldots, 29\}$	$\mathbb{Z} \times \mathbb{Z}$	$f_{1}(x)=(x \bmod 5, x \bmod 6)$		
\mathbb{R}^{+}	\mathbb{R}^{+}	$f_{2}(x)=\sqrt{x}$		
$\mathbb{Z} \times \mathbb{Z}$	$\mathbb{Z} \times \mathbb{Z}$	$f_{3}(x, y)=\left(x, y-x^{2}\right)$		

7. Modular arithmetic (12 points)
(a) Calculate $5^{256}(\bmod 7)$.
(b) Find the smallest positive integer x satisfying $4 x \equiv 3(\bmod 9)$, if one exists, or write NONE, if none exists.
(c) Find the smallest positive integer x satisfying $3 x \equiv 4(\bmod 9)$, if one exists, or write NONE, if none exists.

TABLE 6 Logical Equivalences.

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p \vee \mathbf{F} \equiv p$	
$p \vee \mathbf{T} \equiv \mathbf{T}$	Domination laws
$p \wedge \mathbf{F} \equiv \mathbf{F}$	
$p \vee p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \vee q \equiv q \vee p$	Commutative laws
$p \wedge q \equiv q \wedge p$	Associative laws
$(p \vee q) \vee r \equiv p \vee(q \vee r)$	
$(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$	Distributive laws
$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$	
$p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$	De Morgan's laws
$\neg(p \wedge q) \equiv \neg p \vee \neg q$	
$\neg \neg(p \vee q) \equiv \neg p \wedge \neg q$	Absorption laws
$p \vee(p \wedge q) \equiv p$	
$p \vee(p \vee q) \equiv p$	Negation laws
$p \vee \neg p \equiv \mathbf{T}$	
$p \wedge \neg p \equiv \mathbf{F}$	

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$
\begin{aligned}
& p \rightarrow q \equiv \neg p \vee q \\
& p \rightarrow q \equiv \neg q \rightarrow \neg p \\
& p \vee q \equiv \neg p \rightarrow q \\
& p \wedge q \equiv \neg(p \rightarrow \neg q) \\
& \neg(p \rightarrow q) \equiv p \wedge \neg q \\
& (p \rightarrow q) \wedge(p \rightarrow r) \equiv p \rightarrow(q \wedge r) \\
& (p \rightarrow r) \wedge(q \rightarrow r) \equiv(p \vee q) \rightarrow r \\
& (p \rightarrow q) \vee(p \rightarrow r) \equiv p \rightarrow(q \vee r) \\
& (p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
\end{aligned}
$$

TABLE 8 Logical
Equivalences Involving Biconditionals.

$$
\begin{aligned}
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\
& p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
& \neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q
\end{aligned}
$$

TABLE 1 Rules of Inference.

Rule of Inference	Tautology	Name
$\therefore \begin{gathered} p \\ \frac{p \rightarrow q}{q} \end{gathered}$	$[p \wedge(p \rightarrow q)] \rightarrow q$	Modus ponens
$\begin{aligned} & \neg q \\ \therefore & \frac{p \rightarrow q}{\neg p} \end{aligned}$	$[\neg q \wedge(p \rightarrow q)] \rightarrow \neg p$	Modus tollens
$\begin{array}{r} \quad p \rightarrow q \\ q \rightarrow r \\ \therefore \quad \overline{p \rightarrow r} \end{array}$	$[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$	Hypothetical syllogism
$\begin{aligned} & p \vee q \\ \therefore & \neg p \\ \therefore & q \end{aligned}$	$[(p \vee q) \wedge \neg p] \rightarrow q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \rightarrow(p \vee q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \wedge q) \rightarrow p$	Simplification
$\therefore \begin{gathered} p \\ q \vee q \end{gathered}$	$[(p) \wedge(q)] \rightarrow(p \wedge q)$	Conjunction
$\begin{aligned} & p \vee q \\ & \therefore \neg p \vee r \\ & \therefore q \vee r \end{aligned}$	$[(p \vee q) \wedge(\neg p \vee r)] \rightarrow(q \vee r)$	Resolution

TABLE 2 Rules of Inference for Quantified Statements.

Rule of Inference	Name
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation
$\therefore \frac{P(c) \text { for an arbitrary } c}{\forall x P(x)}$	Universal generalization
$\therefore \frac{\exists x P(x)}{P(c) \text { for some element } c}$	Existential instantiation
$\therefore \frac{P(c) \text { for some element } c}{\exists x P(x)}$	Existential generalization

