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CSE 311: Foundations of Computing I

Spring 2011

Midterm - with solutions

1. Sets (12 points)

(a) Let A, B, C be sets. Express A—(B—C') using only symbols from this list: (,),N,U, A, B,C, A, B, C.

(b) Prove or give a counter-example: for any sets A, B, |P(A) x P(B)| = |P(A x B)|. Here P(S) is
defined to be the power set of S, meaning P(S) ={T :T C S}.

(a) AN (BUCQC). Equivalent forms are also acceptable.

(b) |P(A) x P(B)| = 2/41#1Bl and |P(A x B)| = 2/4"5B! 5o this is false whenever |A| 4 |B| # |A| - | B|;

for example when |A| = |B| = 1.

2. Quantifiers (12 points)

(a) Prove or disprove: Vx € Z,3y € Z(x +y = 0).
(b) Prove or disprove: Iz € Z,Vy € Z(x +y = 0).

(a) For any x, choose y to be —z.

(b) This is false. For any x, we can take y to be something other than —z. For example, take y = 1—x,

sox+y=1#0.

3. Propositional logic (20 points)

(a) Show that (-p — q) — p = q — p using logical equivalences from the table at the back of the

exam. Use at most one equivalence per line.

(b) Construct a truth table for (p VvV q) A (q — p). Is this a tautology, contradiction or contingency?

Briefly indicate why.

(a)

-p—q=-(-p)Vgq

—(-p)=p
(p—q) —=p=@®Vaq —p
-(pVag Vp
=(pA-q)Vp
=pV(pA—q)
=(pV-pAPV-9)
=TAPV—q)
=(pVvV-g AT
=pVq
=-p—q
=q—p

Table 7, line 1
Double negation
Combining (1) and (2)
Table 7, line 1
De Morgan’s Law
Commutative law
Distributive law
Negation law
Commutative law
Identity law
Table 7, line 1
Table 7, line 2
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plalprvela—p][Va)Arlg—Dp) ]
T|T| T T T
TIF| T T T
F|T| T F F
F|F| F T F

This is a contingency, since it is sometimes true and sometimes false.

4. Predicate logic (20 points)

(a) Let A(z,y) be the predicate “x has read book y”, and B(x,y, z) be the predicate “x prefers book y
over book z” where the domain of x is the set of all people, and the domain of y and z is the set
of all books. Express the following statements using ¥, 3, .

i. There is a book that no one prefers over any other book.
1. Anyone who has read any book has a book that they prefer over all other books.

(b) Express the negations of each of the following statements in a way such that — does not precede a
v,3 or (.

i. Yx(Jy(A(z,y) vV Iz(A(z, 2) A B(z,y, 2)))).
ii. 3y(va(Alz,y) — Va((y £ ) — B(z,9,2))))-

(a) i JyVaVz(-B(z,y, z).
il. Ve(Jy(A(z,y)) — IVz(y # z — B(x,y,2))).
(b) i Jz(Vy(—A(z,y) AVz(mA(x, 2) V B(x,y, 2)))).
il. Vy(Fz(A(z,y) AJz(y # 2z A —B(z,y,2)))).

5. Proof (12 points) Suppose x1,xs, 3 € R. Define the mean of these numbers to be

~._ T1+ T2+ T3
- 3

Prove that there exists i € {1,2,3} such that z; > Z.

The proof is by contradiction. Assume that for all 4, ; < Z. Then Zle x; < 3, contradicting our
definiton of .

6. Functions (12 points) In each row, f is a function from A — B. Mark Y/N to indicate whether f is
surjective or injective. Briefly justify your answers.

A B f H surjective \ injective ‘
{0,1,...,29} | ZxZ | fi(z) = (z mod 5,z mod 6) N Y
R R* fo(z) =z Y Y
VAY/ Z X7 f3(z,y) = (z,y — 2?) Y Y

f1 is not surjective because its range is finite and Z x Z is infinite. It is injective by the Chinese
Remainder Theorem.

fo is surjective because for any y > 0 there exists x > 0 such that /z = y; namely, choose z = y2. It
is injective because /1 = /x5 implies that z; = x5 whenever x1, x5 > 0.

f3 is both surjective and injective because we can construct an inverse: f; *(z,y) = (z,y + 22).
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7. Modular arithmetic (12 points)

(a)
(b)

(c)

Calculate 5%°¢ (mod 7).

Find the smallest positive integer x satisfying 4z = 3 (mod 9), if one exists, or write NONE, if
none erists.

Find the smallest positive integer x satisfying 3x = 4 (mod 9), if one exists, or write NONE, if
none exists.

Repeatedly squaring eight times, we obtain 5,4,2,4,2,4,2 4,2, and so the answer is 2.

The multiplicative inverse of 4 (mod 9) can be seen by inspection to be —2, or equivalently 7. We
can also obtain this using Euclid’s algorithm: 9 =2-4+1 and so —2-4=1—-9. Thus z = —6
(mod 9), and so x = 3.

NONE. 3z mod 9 is always divisible by 3 and 4 is not.
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TABLE 6 Logical Equivalences.

Equivalence Name

panT=p Identity laws
pvF=p

pvT=T Domination laws
pAF=F

pPVP=p Idempotent laws
PApP=Pp

-(-p)=p Double negation law
pvg=EqVvyp Commutative laws
PAGQ=qAp

(pvq)vr=pVigVvr)
(pAg)Ar=pAalgAnr)

Associative laws

pvignar)=(p vg)A(pvr)
pAlgVvr)=(pAq)V(pAr)

Distributive laws

“(pAg)=—pV—q
—“(pvqg)=—pA—q

De Morgan’s laws

pV(pAq)=p Absorption laws
pApVa)=p

pv-p=T Negation laws
pAr-p=F

TABLE 7 Logical Equivalences
Involving Conditional Statements.

p—>q=—pVq
p=>g=-g->-p
PVg=-p—g
prg=—(p——q)
~(p—=q)=pA—g

(P> A(p—=r)=p—(qAar)
(p=r)Alg—=r)=(pVvg)—r
(pP=qvp—=r)=p—>(qVvr)
(p—=r)Vig—=r)=(pAg)—=r

TABLE 8 Logical
Equivalences Involving
Biconditionals.

peg=-peo g

S(peq)=Epe

peqg=E(p—>q)n(g—p)

peqg=(prqVimpar—g)
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TABLE 1 Rules of Inference.

Rule of Inference Tautology Name
p [eAn(p—q)l—4q Modus ponens
P q

7
—q [~g A(p— @)= —p Modus tollens
B=>q
=p
p—=>9q (p=A(g—=r)]—=(p—>r) Hypothetical syllogism
q—>r
p—r
pvg pvg)n—-pl—gq Disjunctive syllogism
74

g
P p—=(pveq) Addition

L PVY
PAg (pAg)—p Simplification

i P
p [P A @] = (pAg) Conjunction
q

PG
pPvg [(pvg)a(—mpVvr)]—>(gVr) Resolution
—|p vr

Lqvr

TABLE 2 Rules of Inference for Quantified Statements.

Rule of Inference Name
VX—P(I—) Universal instantiation
. P(c)

P(c) for an arbitrary ¢
el (x)

Universal generalization

Ix P(x)
.. P(c) for some element ¢

Existential instantiation

P(c) for some element ¢
L xP(x)

Existential generalization




