CSE 311: Foundations of Computing I Spring 2011

Midterm - with solutions

1. **Sets** (12 points)

- (a) Let A, B, C be sets. Express A-(B-C) using only symbols from this list: $(,), \cap, \cup, A, B, C, \overline{A}, \overline{B}, \overline{C}$.
- (b) Prove or give a counter-example: for any sets A, B, $|P(A) \times P(B)| = |P(A \times B)|$. Here P(S) is defined to be the power set of S, meaning $P(S) = \{T : T \subseteq S\}$.
- (a) $A \cap (\overline{B} \cup C)$. Equivalent forms are also acceptable.
- (b) $|P(A) \times P(B)| = 2^{|A|+|B|}$ and $|P(A \times B)| = 2^{|A| \cdot |B|}$, so this is false whenever $|A| + |B| \neq |A| \cdot |B|$; for example when |A| = |B| = 1.

2. Quantifiers (12 points)

- (a) Prove or disprove: $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}(x+y=0).$
- (b) Prove or disprove: $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}(x+y=0).$
- (a) For any x, choose y to be -x.
- (b) This is false. For any x, we can take y to be something other than -x. For example, take y = 1-x, so $x + y = 1 \neq 0$.

3. Propositional logic (20 points)

- (a) Show that $(\neg p \rightarrow q) \rightarrow p \equiv q \rightarrow p$ using logical equivalences from the table at the back of the exam. Use at most one equivalence per line.
- (b) Construct a truth table for $(p \lor q) \land (q \to p)$. Is this a tautology, contradiction or contingency? Briefly indicate why.
 - $\neg p \rightarrow q \equiv \neg (\neg p) \lor q$ Table 7, line 1 (1) $\neg(\neg p) \equiv p$ (2)Double negation $(\neg p \rightarrow q) \rightarrow p \equiv (p \lor q) \rightarrow p$ Combining (1) and (2)(3) $\equiv \neg (p \lor q) \lor p$ Table 7, line 1 (4) $\equiv (\neg p \land \neg q) \lor p$ De Morgan's Law (5) $\equiv p \lor (\neg p \land \neg q)$ Commutative law (6) $\equiv (p \lor \neg p) \land (p \lor \neg q)$ Distributive law (7) $\equiv T \land (p \lor \neg q)$ Negation law (8) $\equiv (p \lor \neg q) \land T$ Commutative law (9) $\equiv p \lor \neg q$ Identity law (10)Table 7, line 1 $\equiv \neg p \to \neg q$ (11) $\equiv q \rightarrow p$ Table 7, line 2 (12)
- (a)

(b)					
	p	q	$p \vee q$	$q \rightarrow p$	$(p \lor q) \land (q \to p)$
	Т	Т	Т	Т	Т
	Т	F	Т	Т	Т
	F	Т	Т	F	F
	F	F	F	Т	F

This is a contingency, since it is sometimes true and sometimes false.

4. Predicate logic (20 points)

- (a) Let A(x, y) be the predicate "x has read book y", and B(x, y, z) be the predicate "x prefers book y over book z" where the domain of x is the set of all people, and the domain of y and z is the set of all books. Express the following statements using ∀,∃,¬.
 - *i.* There is a book that no one prefers over any other book.
 - *ii.* Anyone who has read any book has a book that they prefer over all other books.
- (b) Express the negations of each of the following statements in a way such that \neg does not precede a $\forall, \exists \text{ or } (.$
 - *i.* $\forall x (\exists y (A(x, y) \lor \exists z (A(x, z) \land \neg B(x, y, z)))).$
 - *ii.* $\exists y (\forall x (A(x, y) \rightarrow \forall z ((y \neq z) \rightarrow B(x, y, z)))).$
- $\begin{array}{ll} \text{(a)} & \text{i. } \exists y \forall x \forall z (\neg B(x,y,z). \\ & \text{ii. } \forall x (\exists y (A(x,y)) \rightarrow \exists y \forall z (y \neq z \rightarrow B(x,y,z))). \end{array}$
- $\begin{array}{ll} \text{(b)} & \text{i. } \exists x (\forall y (\neg A(x,y) \land \forall z (\neg A(x,z) \lor B(x,y,z)))). \\ & \text{ii. } \forall y (\exists x (A(x,y) \land \exists z (y \neq z \land \neg B(x,y,z)))). \end{array}$
- 5. **Proof** (12 points) Suppose $x_1, x_2, x_3 \in \mathbb{R}$. Define the mean of these numbers to be

$$\bar{x} := \frac{x_1 + x_2 + x_3}{3}$$

Prove that there exists $i \in \{1, 2, 3\}$ such that $x_i \geq \bar{x}$.

The proof is by contradiction. Assume that for all $i, x_i < \bar{x}$. Then $\sum_{i=1}^{3} x_i < 3\bar{x}$, contradicting our definiton of \bar{x} .

6. Functions (12 points) In each row, f is a function from $A \rightarrow B$. Mark Y/N to indicate whether f is surjective or injective. Briefly justify your answers.

A	В	f	surjective	injective
$\{0, 1, \dots, 29\}$	$\mathbb{Z} \times \mathbb{Z}$	$f_1(x) = (x \bmod 5, x \bmod 6)$	N	Y
\mathbb{R}^+	\mathbb{R}^+	$f_2(x) = \sqrt{x}$	Y	Y
$\mathbb{Z} imes \mathbb{Z}$	$\mathbb{Z} \times \mathbb{Z}$	$f_3(x,y) = (x, y - x^2)$	Y	Y

 f_1 is not surjective because its range is finite and $\mathbb{Z} \times \mathbb{Z}$ is infinite. It is injective by the Chinese Remainder Theorem.

 f_2 is surjective because for any y > 0 there exists x > 0 such that $\sqrt{x} = y$; namely, choose $x = y^2$. It is injective because $\sqrt{x_1} = \sqrt{x_2}$ implies that $x_1 = x_2$ whenever $x_1, x_2 > 0$.

 f_3 is both surjective and injective because we can construct an inverse: $f_3^{-1}(x,y) = (x, y + x^2)$.

- Name
 - 7. Modular arithmetic (12 points)
 - (a) Calculate $5^{256} \pmod{7}$.
 - (b) Find the smallest positive integer x satisfying $4x \equiv 3 \pmod{9}$, if one exists, or write NONE, if none exists.
 - (c) Find the smallest positive integer x satisfying $3x \equiv 4 \pmod{9}$, if one exists, or write NONE, if none exists.
 - (a) Repeatedly squaring eight times, we obtain 5, 4, 2, 4, 2, 4, 2, 4, 2, and so the answer is 2.
 - (b) The multiplicative inverse of 4 (mod 9) can be seen by inspection to be -2, or equivalently 7. We can also obtain this using Euclid's algorithm: $9 = 2 \cdot 4 + 1$ and so $-2 \cdot 4 = 1 9$. Thus $x \equiv -6$ (mod 9), and so x = 3.
 - (c) NONE. $3x \mod 9$ is always divisible by 3 and 4 is not.

Equivalence	Name	
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws	
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws	
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws	
$\neg(\neg p) \equiv p$	Double negation law	
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws	
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws	
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws	
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws	

TABLE 7 Logical EquivalencesInvolving Conditional Statements. $p \rightarrow q \equiv \neg p \lor q$ $p \rightarrow q \equiv \neg q \rightarrow \neg p$ $p \lor q \equiv \neg p \rightarrow q$ $p \land q \equiv \neg (p \rightarrow \neg q)$ $\neg (p \rightarrow q) \equiv p \land \neg q$ $(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$ $(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$ $(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$

 $(p \to r) \lor (q \to r) \equiv (p \land q) \to r$

TABLE 8 Logical
Equivalences Involving
Biconditionals. $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$ $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$ $\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Rule of Inference	Tautology	Name	
$\frac{p}{p \to q}$ $\therefore \frac{q}{q}$	$[p \land (p \to q)] \to q$	Modus ponens	
$ \begin{array}{c} \neg q \\ p \to q \\ \vdots \neg p \end{array} $	$[\neg q \land (p \to q)] \to \neg p$	Modus tollens	
$p \to q$ $\frac{q \to r}{r}$ $\therefore p \to r$	$[(p \to q) \land (q \to r)] \to (p \to r)$	Hypothetical syllogism	
$p \lor q$ $\neg p$ $\therefore \overline{q}$	$[(p \lor q) \land \neg p] \to q$	Disjunctive syllogism	
$\therefore \frac{p}{p \lor q}$	$p \to (p \lor q)$	Addition	
$\frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification	
$\frac{p}{q}$ $\therefore \frac{q}{p \wedge q}$	$[(p) \land (q)] \to (p \land q)$	Conjunction	
$p \lor q$ $\neg p \lor r$ $\neg q \lor r$	$[(p \lor q) \land (\neg p \lor r)] \to (q \lor r)$	Resolution	

Rule of Inference	Name	
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation	
$\therefore \frac{P(c) \text{ for an arbitrary } c}{\forall x P(x)}$	Universal generalization	
$\therefore \frac{\exists x P(x)}{P(c) \text{ for some element } c}$	Existential instantiation	
P(c) for some element c	Existential generalization	