CSE 311: Foundations of Computing I Sample midterm

1. Prime factorization (4 points) Compute the prime factorization of 320 and 450 . Compute gcd(320, 450) and $\operatorname{lcm}(320,450)$, expressing your answer as a product of prime factors.
2. Sets (12 points) Let $A=\{z \in \mathbb{Z} \mid 1 \leq z \leq 8\}, B=\{z \in \mathbb{Z}|2| z\}$ and let C be the set of primes. Fill in the table below with the set that each expression evaluates to:

Expression	Value
$A \cap B$	
$B \cap C$	
$A-(B \cup C)$	

3. Primes and predicates (8 points) Translate the expression " p is prime" into mathematical notation, i.e. using only $\forall, \exists, \mid, \mathbb{Z}$ and other mathematical symbols.

4. Propositional logic (20 points)

(a) Show that $\neg(p \oplus q) \equiv(p \rightarrow q) \wedge(\neg p \rightarrow \neg q)$ using logical equivalences from the table at the back of the exam and the fact that $p \oplus q \equiv \neg(p \leftrightarrow q)$.
(b) Construct a truth table for $q \vee(p \rightarrow \neg q)$. Is this a tautology, contradiction or contingency? Briefly indicate why.

5. Predicate logic (20 points)

(a) Let $S(x)$ be the predicate " x is a student", $R(y)$ the predicate " y is a road in Seattle" and $V(x, y)$ the predicate " x has visited road y." Express the following statements using \forall, \exists, \neg.
i. No student has visited all roads in Seattle.
ii. At least two roads were visited by all students.
iii. [0 points] There exist two roads such that I could not travel both and I took the one less traveled by.
(b) Express the negations of each of the following statements in a way such that \neg does not precede a \forall, \exists or $($.
i. $\exists x \forall y(P(x, y) \wedge \exists z \neg Q(x, z))$
ii. $\forall x(P(x) \rightarrow \exists y(Q(x, y)))$.
6. Proof (10 points) If A and B are sets, then does $A-B=\emptyset$ imply that $A=B$? Prove, or give a counter-example.
7. Proof (10 points) Prove that $\forall a, b, n \in \mathbb{Z}(4 \mid n \wedge n=a b) \rightarrow(2|a \vee 2| b)$.
8. Functions (18 points) In each row, f is a function from $A \rightarrow B$. Mark Y / N to indicate whether f is surjective or injective. Briefly justify your answers.

A	B	f	surjective	injective
\mathbb{Z}	$\{0,1,2\}$	$f(x)=x \bmod 3$		
\mathbb{Z}	\mathbb{Z}^{+}	$f(x)=\|x-1\|$		
$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	$f(x, y)=3 x+7 y$		

TABLE 6 Logical Equivalences.

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p \vee \mathbf{F} \equiv p$	
$p \vee \mathbf{T} \equiv \mathbf{T}$	Domination laws
$p \wedge \mathbf{F} \equiv \mathbf{F}$	
$p \vee p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \vee q \equiv q \vee p$	Commutative laws
$p \wedge q \equiv q \wedge p$	Associative laws
$(p \vee q) \vee r \equiv p \vee(q \vee r)$	
$(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$	Distributive laws
$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$	
$p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$	De Morgan's laws
$\neg(p \wedge q) \equiv \neg p \vee \neg q$	
$\neg \neg(p \vee q) \equiv \neg p \wedge \neg q$	Absorption laws
$p \vee(p \wedge q) \equiv p$	
$p \vee(p \vee q) \equiv p$	Negation laws
$p \vee \neg p \equiv \mathbf{T}$	
$p \wedge \neg p \equiv \mathbf{F}$	

TABLE 7 Logical Equivalences

 Involving Conditional Statements.$$
\begin{aligned}
& p \rightarrow q \equiv \neg p \vee q \\
& p \rightarrow q \equiv \neg q \rightarrow \neg p \\
& p \vee q \equiv \neg p \rightarrow q \\
& p \wedge q \equiv \neg(p \rightarrow \neg q) \\
& \neg(p \rightarrow q) \equiv p \wedge \neg q \\
& (p \rightarrow q) \wedge(p \rightarrow r) \equiv p \rightarrow(q \wedge r) \\
& (p \rightarrow r) \wedge(q \rightarrow r) \equiv(p \vee q) \rightarrow r \\
& (p \rightarrow q) \vee(p \rightarrow r) \equiv p \rightarrow(q \vee r) \\
& (p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
\end{aligned}
$$

TABLE 8 Logical
Equivalences Involving Biconditionals.

$$
\begin{aligned}
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\
& p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
& \neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q
\end{aligned}
$$

TABLE 1 Rules of Inference.

Rule of Inference	Tautology	Name
$\therefore \frac{p}{p \rightarrow q} ⿻ 日 \begin{gathered} p \end{gathered}$	$[p \wedge(p \rightarrow q)] \rightarrow q$	Modus ponens
$\begin{gathered} \neg q \\ \therefore \neg p \end{gathered}$	$[\neg q \wedge(p \rightarrow q)] \rightarrow \neg p$	Modus tollens
$\begin{array}{r} p \rightarrow q \\ \therefore \frac{q \rightarrow r}{p \rightarrow r} \end{array}$	$[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$	Hypothetical syllogism
$\begin{aligned} & p \vee q \\ & \therefore \neg p \\ & \therefore q \end{aligned}$	$[(p \vee q) \wedge \neg p] \rightarrow q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \rightarrow(p \vee q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \wedge q) \rightarrow p$	Simplification
$\begin{gathered} p \\ \therefore \frac{q}{p \wedge q} \end{gathered}$	$[(p) \wedge(q)] \rightarrow(p \wedge q)$	Conjunction
$\begin{aligned} & p \vee q \\ \therefore & \frac{\neg p \vee r}{q \vee r} \end{aligned}$	$[(p \vee q) \wedge(\neg p \vee r)] \rightarrow(q \vee r)$	Resolution

TABLE 2 Rules of Inference for Quantified Statements.

Rule of Inference	Name
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation
$\therefore \frac{P(c) \text { for an arbitrary } c}{\forall x P(x)}$	Universal generalization
$\therefore \frac{\exists x P(x)}{P(c) \text { for some element } c}$	Existential instantiation
$\therefore \frac{P(c) \text { for some element } c}{\exists x P(x)}$	Existential generalization

