CSE 311: Foundations of Computing I Sample midterm - with solutions

1. Prime factorization (4 points) Compute the prime factorization of 320 and 450 . Compute $\operatorname{gcd}(320,450)$ and $\operatorname{lcm}(320,450)$, expressing your answer as a product of prime factors.
$320=2^{6} \cdot 5,450=2 \cdot 3^{2} \cdot 5^{2} . \operatorname{gcd}(320,450)=2 \cdot 5$ and $\operatorname{lcm}(320,450)=2^{6} \cdot 3^{2} \cdot 5^{2}$.
2. Sets (12 points) Let $A=\{z \in \mathbb{Z} \mid 1 \leq z \leq 8\}, B=\{z \in \mathbb{Z}|2| z\}$ and let C be the set of primes. Fill in the table below with the set that each expression evaluates to:

Expression	Value
$A \cap B$	$\{2,4,6,8\}$
$B \cap C$	$\{2\}$
$A-(B \cup C)$	$\{1\}$

3. Primes and predicates (8 points) Translate the expression "p is prime" into mathematical notation, i.e. using only $\forall, \exists, \mid, \mathbb{Z}$ and other mathematical symbols.
$\forall d \in \mathbb{Z}^{+}(d \mid p \rightarrow(d=1 \vee d=p))$.
Other answers are also possible.
4. Propositional logic (20 points)
(a) Show that $\neg(p \oplus q) \equiv(p \rightarrow q) \wedge(\neg p \rightarrow \neg q)$ using logical equivalences from the table at the back of the exam and the fact that $p \oplus q \equiv \neg(p \leftrightarrow q)$.
(b) Construct a truth table for $q \vee(p \rightarrow \neg q)$. Is this a tautology, contradiction or contingency? Briefly indicate why.
(a)

$$
\begin{array}{rlr}
\neg(p \oplus q) & \equiv \neg(\neg(p \leftrightarrow q)) & \text { given } \\
\neg(\neg(p \leftrightarrow q)) & \equiv p \leftrightarrow q & \text { double negation } \\
p \leftrightarrow q & \equiv(p \rightarrow q) \wedge(q \rightarrow p) & \text { Table 8, line } 1 \\
q \rightarrow p & \equiv \neg p \rightarrow \neg q & \text { Table 7, line 2 } \\
(p \rightarrow q) \wedge(q \rightarrow p) & \equiv(p \rightarrow q) \wedge(\neg p \rightarrow \neg q) & \text { Combining (3) and (4) } \tag{5}
\end{array}
$$

(b)

p	q	$\neg q$	$p \rightarrow \neg q$	$q \vee(p \rightarrow \neg q)$
T	T	F	F	T
T	F	T	T	T
F	T	F	T	T
F	F	T	T	T

5. Predicate logic (20 points)
(a) Let $S(x)$ be the predicate " x is a student", $R(y)$ the predicate " y is a road in Seattle" and $V(x, y)$ the predicate" x has visited road y. " Express the following statements using \forall, \exists, \neg.
i. No student has visited all roads in Seattle.
ii. At least two roads were visited by all students.
iii. [0 points] There exist two roads such that I could not travel both and I took the one less traveled by.
(b) Express the negations of each of the following statements in a way such that \neg does not precede a \forall, \exists or (.
i. $\exists x \forall y(P(x, y) \wedge \exists z \neg Q(x, z))$
ii. $\forall x(P(x) \rightarrow \exists y(Q(x, y)))$.
(a) i. $\neg \exists x \forall y(V(x, y))$
ii. $\exists y_{1}, \exists y_{2}\left(y_{1} \neq y_{2} \wedge \forall x\left(V\left(x, y_{1}\right) \wedge V\left(x, y_{2}\right)\right)\right)$.
iii. Trick question. Note that the author didn't actually take the road less traveled by: he only imagines that in later retelling the story he'll claim that the road he took was the less popular one.
(b) i. $\forall x \exists y(\neg P(x, y) \vee \forall z(Q(x, z)))$.
ii. $\exists x(P(x) \wedge \forall y(\neg Q(x, y)))$.
6. Proof (10 points) If A and B are sets, then does $A-B=\emptyset$ imply that $A=B$? Prove, or give a counter-example. No. Consider $A=\{1\}, B=\{1,2\}$.
7. Proof (10 points) Prove that $\forall a, b, n \in \mathbb{Z}(4 \mid n \wedge n=a b) \rightarrow(2|a \vee 2| b)$. We prove the contrapositive. Assume $\neg(2|a \vee 2| b)$ or, equivalently, that $2 \nless a$ and $2 \nless b$. Use the division algorithm to write

$$
a=2 q_{1}+r_{1} \quad \text { and } \quad b=2 q_{2}+r_{2}
$$

for some integers $q_{1}, r_{1}, q_{2}, r_{2}$ satisfying $0 \leq r_{1}, r_{2}<2$. If we had $r_{1}=0$ then it would imply that $2 \mid a$; since we know this is not the case, we must have $r_{1}=1$. The same argument proves that $r_{2}=1$. Thus $a b=\left(2 q_{1}+1\right)\left(2 q_{2}+1\right)=2\left(2 q_{1} q_{2}+q_{1}+q_{2}\right)+1$. Thus implies that $a b \equiv 1(\bmod 4)$ or $a b \equiv 3(\bmod 4)$ and that $4 \not \backslash a b$. Therefore either $4 \nmid n$ or $n \neq a b$ (or both). QED.
8. Functions (18 points) In each row, f is a function from $A \rightarrow B$. Mark Y / N to indicate whether f is surjective or injective. Briefly justify your answers.

A	B	f	surjective	injective
\mathbb{Z}	$\{0,1,2\}$	$f(x)=x \bmod 3$	Y	N
\mathbb{Z}	\mathbb{Z}^{+}	$f(x)=\|x-1\|$	Y	N
$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	$f(x, y)=3 x+7 y$	Y	N

For the first function, we see that f is surjective by considering inputs $0,1,2$, which together get sent to the entire codomain; we see it is not injective by considering inputs 0,3 , which both get mapped to 0 . For the second function, f is surjective because for any $y \in \mathbb{Z}^{+}, y+1 \in \mathbb{Z}$ and $f(y+1)=y$. f is not injective because $f(0)=f(2)$. For the third function, f is surjective because $\operatorname{gcd}(3,7)=1$. Using the extended Euclid's algorithm (or guess-and-check) we see that $3 \cdot(-2)+7=1$. Therefore, for any $z \in \mathbb{Z}, f(-2 z, z)=3 \cdot(-2 z)+7 z=z . f$ is not injective because $f(7,0)=f(0,3)=21$.

TABLE 6 Logical Equivalences.

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p \vee \mathbf{F} \equiv p$	
$p \vee \mathbf{T} \equiv \mathbf{T}$	Domination laws
$p \wedge \mathbf{F} \equiv \mathbf{F}$	
$p \vee p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \vee q \equiv q \vee p$	Commutative laws
$p \wedge q \equiv q \wedge p$	Associative laws
$(p \vee q) \vee r \equiv p \vee(q \vee r)$	
$(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$	Distributive laws
$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$	
$p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$	De Morgan's laws
$\neg(p \wedge q) \equiv \neg p \vee \neg q$	
$\neg \neg(p \vee q) \equiv \neg p \wedge \neg q$	Absorption laws
$p \vee(p \wedge q) \equiv p$	
$p \vee(p \vee q) \equiv p$	Negation laws
$p \vee \neg p \equiv \mathbf{T}$	
$p \wedge \neg p \equiv \mathbf{F}$	

TABLE 7 Logical Equivalences

 Involving Conditional Statements.$$
\begin{aligned}
& p \rightarrow q \equiv \neg p \vee q \\
& p \rightarrow q \equiv \neg q \rightarrow \neg p \\
& p \vee q \equiv \neg p \rightarrow q \\
& p \wedge q \equiv \neg(p \rightarrow \neg q) \\
& \neg(p \rightarrow q) \equiv p \wedge \neg q \\
& (p \rightarrow q) \wedge(p \rightarrow r) \equiv p \rightarrow(q \wedge r) \\
& (p \rightarrow r) \wedge(q \rightarrow r) \equiv(p \vee q) \rightarrow r \\
& (p \rightarrow q) \vee(p \rightarrow r) \equiv p \rightarrow(q \vee r) \\
& (p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
\end{aligned}
$$

TABLE 8 Logical
Equivalences Involving Biconditionals.

$$
\begin{aligned}
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\
& p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
& \neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q
\end{aligned}
$$

TABLE 1 Rules of Inference．

Rule of Inference	Tautology	Name
$\therefore \frac{p}{p \rightarrow q} ⿻ 日 乚$	$[p \wedge(p \rightarrow q)] \rightarrow q$	Modus ponens
$\begin{gathered} \neg q \\ \therefore \neg p \end{gathered}$	$[\neg q \wedge(p \rightarrow q)] \rightarrow \neg p$	Modus tollens
$\begin{array}{r} p \rightarrow q \\ \therefore \frac{q \rightarrow r}{p \rightarrow r} \end{array}$	$[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$	Hypothetical syllogism
$\begin{aligned} & p \vee q \\ & \therefore \neg p \\ & \therefore q \end{aligned}$	$[(p \vee q) \wedge \neg p] \rightarrow q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \rightarrow(p \vee q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \wedge q) \rightarrow p$	Simplification
$\begin{gathered} p \\ \therefore \frac{q}{p \wedge q} \end{gathered}$	$[(p) \wedge(q)] \rightarrow(p \wedge q)$	Conjunction
$\begin{aligned} & p \vee q \\ \therefore & \frac{\neg p \vee r}{q \vee r} \end{aligned}$	$[(p \vee q) \wedge(\neg p \vee r)] \rightarrow(q \vee r)$	Resolution

TABLE 2 Rules of Inference for Quantified Statements．

Rule of Inference	Name
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation
$\therefore \frac{P(c) \text { for an arbitrary } c}{\forall x P(x)}$	Universal generalization
$\therefore \frac{\exists x P(x)}{P(c) \text { for some element } c}$	Existential instantiation
$\therefore \frac{P(c) \text { for some element } c}{\exists x P(x)}$	Existential generalization

