CSE 311: Foundations of Computing I Sample midterm - with solutions

1. Prime factorization (4 points) Compute the prime factorization of 320 and 450. Compute gcd(320, 450) and lcm(320, 450), expressing your answer as a product of prime factors.

 $320 = 2^6 \cdot 5, 450 = 2 \cdot 3^2 \cdot 5^2$. $gcd(320, 450) = 2 \cdot 5$ and $lcm(320, 450) = 2^6 \cdot 3^2 \cdot 5^2$.

2. Sets (12 points) Let $A = \{z \in \mathbb{Z} | 1 \le z \le 8\}$, $B = \{z \in \mathbb{Z} | 2|z\}$ and let C be the set of primes. Fill in the table below with the set that each expression evaluates to:

Expression	Value
$A \cap B$	$\{2, 4, 6, 8\}$
$B \cap C$	{2}
$A - (B \cup C)$	{1}

3. Primes and predicates (8 points) Translate the expression "p is prime" into mathematical notation, *i.e.* using only $\forall, \exists, \mid, \mathbb{Z}$ and other mathematical symbols.

 $\forall d \in \mathbb{Z}^+(d|p \to (d = 1 \lor d = p)).$

Other answers are also possible.

4. Propositional logic (20 points)

- (a) Show that $\neg(p \oplus q) \equiv (p \to q) \land (\neg p \to \neg q)$ using logical equivalences from the table at the back of the exam and the fact that $p \oplus q \equiv \neg(p \leftrightarrow q)$.
- (b) Construct a truth table for $q \lor (p \to \neg q)$. Is this a tautology, contradiction or contingency? Briefly indicate why.

 $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

 $q \to p \equiv \neg p \to \neg q$

(a)

- $\neg(p \oplus q) \equiv \neg(\neg(p \leftrightarrow q))$ (1)given $\neg(\neg(p \leftrightarrow q)) \equiv p \leftrightarrow q$ (2)
 - double negation
 - Table 8, line 1 (3)
 - Table 7, line 2 (4)

$$(p \to q) \land (q \to p) \equiv (p \to q) \land (\neg p \to \neg q)$$
 Combining (3) and (4) (5)

(b)

p	q	$\neg q$	$p \rightarrow \neg q$	$q \lor (p \to \neg q)$
Т	Т	F	F	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	Т	Т	Т

5. **Predicate logic** (20 points)

- (a) Let S(x) be the predicate "x is a student", R(y) the predicate "y is a road in Seattle" and V(x, y) the predicate "x has visited road y." Express the following statements using \forall, \exists, \neg .
 - i. No student has visited all roads in Seattle.
 - ii. At least two roads were visited by all students.
 - iii. [0 points] There exist two roads such that I could not travel both and I took the one less traveled by.
- (b) Express the negations of each of the following statements in a way such that ¬ does not precede a ∀,∃ or (.
 - *i.* $\exists x \forall y (P(x, y) \land \exists z \neg Q(x, z))$
 - *ii.* $\forall x(P(x) \rightarrow \exists y(Q(x,y))).$
- (a) i. $\neg \exists x \forall y(V(x,y))$
 - ii. $\exists y_1, \exists y_2(y_1 \neq y_2 \land \forall x(V(x, y_1) \land V(x, y_2))).$
 - iii. Trick question. Note that the author didn't actually take the road less traveled by: he only imagines that in later retelling the story he'll claim that the road he took was the less popular one.
- (b) i. $\forall x \exists y (\neg P(x, y) \lor \forall z(Q(x, z))).$ ii. $\exists x(P(x) \land \forall y (\neg Q(x, y))).$
- 6. **Proof** (10 points) If A and B are sets, then does $A B = \emptyset$ imply that A = B? Prove, or give a counter-example. No. Consider $A = \{1\}, B = \{1, 2\}.$
- 7. **Proof** (10 points) Prove that $\forall a, b, n \in \mathbb{Z}$ $(4|n \wedge n = ab) \rightarrow (2|a \vee 2|b)$. We prove the contrapositive. Assume $\neg(2|a \vee 2|b)$ or, equivalently, that 2 a and 2 b. Use the division algorithm to write

$$a = 2q_1 + r_1$$
 and $b = 2q_2 + r_2$,

for some integers q_1, r_1, q_2, r_2 satisfying $0 \le r_1, r_2 < 2$. If we had $r_1 = 0$ then it would imply that 2|a; since we know this is not the case, we must have $r_1 = 1$. The same argument proves that $r_2 = 1$. Thus $ab = (2q_1 + 1)(2q_2 + 1) = 2(2q_1q_2 + q_1 + q_2) + 1$. Thus implies that $ab \equiv 1 \pmod{4}$ or $ab \equiv 3 \pmod{4}$ and that $4 \sqrt{ab}$. Therefore either $4 \sqrt{n}$ or $n \neq ab$ (or both). QED.

8. Functions (18 points) In each row, f is a function from $A \rightarrow B$. Mark Y/N to indicate whether f is surjective or injective. Briefly justify your answers.

A	В	f	surjective	injective
\mathbb{Z}	$\{0,1,2\}$	$f(x) = x \bmod 3$	Y	Ν
\mathbb{Z}	\mathbb{Z}^+	f(x) = x - 1	Y	Ν
$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	f(x,y) = 3x + 7y	Y	Ν

For the first function, we see that f is surjective by considering inputs 0,1,2, which together get sent to the entire codomain; we see it is not injective by considering inputs 0,3, which both get mapped to 0. For the second function, f is surjective because for any $y \in \mathbb{Z}^+$, $y + 1 \in \mathbb{Z}$ and f(y + 1) = y. f is not injective because f(0) = f(2). For the third function, f is surjective because gcd(3,7) = 1. Using the extended Euclid's algorithm (or guess-and-check) we see that $3 \cdot (-2) + 7 = 1$. Therefore, for any $z \in \mathbb{Z}$, $f(-2z, z) = 3 \cdot (-2z) + 7z = z$. f is not injective because f(7, 0) = f(0, 3) = 21.

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

TABLE 7Logical EquivalencesInvolving Conditional Statements.
$p \to q \equiv \neg p \lor q$
$p \to q \equiv \neg q \to \neg p$
$p \lor q \equiv \neg p \to q$
$p \land q \equiv \neg (p \to \neg q)$
$\neg(p \to q) \equiv p \land \neg q$
$(p \to q) \land (p \to r) \equiv p \to (q \land r)$
$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$
$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$
$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$

TABLE 8 Logical
Equivalences Involving
Biconditionals. $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
 $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
 $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
 $\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Rule of Inference	Tautology	Name
$\frac{p}{p \to q}$ $\therefore \frac{q}{q}$	$[p \land (p \to q)] \to q$	Modus ponens
$\frac{\neg q}{p \to q}$ $\therefore \frac{p \to q}{\neg p}$	$[\neg q \land (p \to q)] \to \neg p$	Modus tollens
$p \to q$ $\frac{q \to r}{r \to r}$	$[(p \to q) \land (q \to r)] \to (p \to r)$	Hypothetical syllogism
$p \lor q$ $\neg p$ $\therefore \overline{q}$	$[(p \lor q) \land \neg p] \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \lor q}$	$p \to (p \lor q)$	Addition
$\frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification
$\frac{p}{q}$ $\therefore \frac{q}{p \wedge q}$	$[(p) \land (q)] \to (p \land q)$	Conjunction
$p \lor q$ $\neg p \lor r$ $\neg q \lor r$	$[(p \lor q) \land (\neg p \lor r)] \to (q \lor r)$	Resolution

Rule of Inference	Name
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation
$\therefore \frac{P(c) \text{ for an arbitrary } c}{\forall x P(x)}$	Universal generalization
$\therefore \frac{\exists x P(x)}{P(c) \text{ for some element } c}$	Existential instantiation
P(c) for some element c	Existential generalization