CSE 311: Foundations of Computing I
Sample midterm - with solutions

1. Prime factorization (4 points) Compute the prime factorization of 320 and 450. Compute ged (320, 450)
and lem(320, 450), expressing your answer as a product of prime factors.

320 = 255,450 = 2 3% - 52. ged(320,450) = 2 -5 and lem(320, 450) = 26 - 32 . 52.

2. Sets (12 points) Let A = {z € Z|1 < 2 < 8}, B = {z € Z| 2|z} and let C be the set of primes. Fill in
the table below with the set that each expression evaluates to:

Expression Value
ANB {2,4,6,8}
BNC {2}
A—(BUC) {1}

3. Primes and predicates (8 points) Translate the expression “p is prime” into mathematical notation,
i.e. using only V,3,|,Z and other mathematical symbols.
Vd e Zt(dlp — (d =1V d=p)).

Other answers are also possible.

4. Propositional logic (20 points)
(a) Show that =(p® q) = (p — ¢) A (—p — —q) using logical equivalences from the table at the back of
the exam and the fact that p® q = —(p < q).

(b) Construct a truth table for gV (p — —q). Is this a tautology, contradiction or contingency? Briefly
indicate why.

(a)
~(p@q) =~(=(p < q)) given (1)
~(=pe=q)=pegq double negation (2)
peq= (p — q) A (q — p) Table 8, line 1 (3)
q—Pp="p—q Table 7, line 2 (4)
P—=a)A(@g—=p)={P—a9A(P—q) Combining (3) and (4) ()

(b)

J

q[p—>-q[qVvip—q |

& I EEITIES
| 3| | e
S| ||
===l =

===l =

5. Predicate logic (20 points)



(a) Let S(x) be the predicate “r is a student”, R(y) the predicate “y is a road in Seattle” and V(x,y)
the predicate “r has visited road y.” Ezxpress the following statements using V, 3, —.
i. No student has visited all roads in Seattle.
1. At least two roads were visited by all students.
iii. [0 points] There exist two roads such that I could not travel both and I took the one less
traveled by.
(b) Express the negations of each of the following statements in a way such that — does not precede a
v,3 or (.
i. JaVy(P(x,y) A 3z-Q(z, 2))
it. Va(P(r) — Jy(Q(z,y))).

(a) i —JaVy(V(z,y))
il. Elyl, ElyQ(yl 7é Y2 A Vx(V(x, yl) A V(.I‘, yQ)))
iii. Trick question. Note that the author didn’t actually take the road less traveled by: he only

imagines that in later retelling the story he’ll claim that the road he took was the less popular
one.

(b) i VzIy(—P(z,y) vVVz(Q(z, 2))).
ii. Jz(P(z) AVy(—Q(z,v))).

6. Proof (10 points) If A and B are sets, then does A — B = ) imply that A = B? Prove, or give a
counter-example. No. Consider A = {1}, B = {1, 2}.

7. Proof (10 points) Prove that Va,b,n € Z (4n An = ab) — (2|a V 2|b). We prove the contrapositive.
Assume —(2]a V 2|b) or, equivalently, that 2 fa and 2 fb. Use the division algorithm to write

a=2q +1r and b=2qs + 1o,

for some integers g1, 71, g2, T2 satisfying 0 < rq,ry < 2. If we had r; = 0 then it would imply that 2|a;
since we know this is not the case, we must have r; = 1. The same argument proves that ro = 1. Thus
ab= (2q1 +1)(2¢2 + 1) = 2(2q192 + ¢1 + g2) + 1. Thus implies that ab =1 (mod 4) or ab =3 (mod 4)
and that 4 fab. Therefore either 4 fn or n # ab (or both). QED.

8. Functions (18 points) In each row, f is a function from A — B. Mark Y/N to indicate whether f is
surjective or injective. Briefly justify your answers.

A B f H surjective \ injective ‘

Z {0,1,2} | f(z) = 2 mod 3 Y N

Z VAl f(z) =]z —1| Y N
Y/ Z flz,y) =3+ Ty Y N

For the first function, we see that f is surjective by considering inputs 0,1,2, which together get sent
to the entire codomain; we see it is not injective by considering inputs 0,3, which both get mapped to
0. For the second function, f is surjective because for any y € Z*, y+1€ Z and f(y+1) =y. fis
not injective because f(0) = f(2). For the third function, f is surjective because ged(3,7) = 1. Using
the extended Euclid’s algorithm (or guess-and-check) we see that 3 - (—2) + 7 = 1. Therefore, for any
2 €7, f(—22,2) =3-(—22) + 7z = z. f is not injective because f(7,0) = f(0,3) = 21.



TABLE 6 Logical Equivalences.

Equivalence Name

panT=p Identity laws
pvF=p

pvT=T Domination laws
pAF=F

pPVP=p Idempotent laws
PApP=Pp

-(-p)=p Double negation law
pvg=EqVvyp Commutative laws
PAGQ=qAp

(pvq)vr=pVigVvr)
(pAg)Ar=pAalgAnr)

Associative laws

pvlgar)=(p vg)A(pvr)
pAlgVvr)=(pAq)V(pAr)

Distributive laws

“(pAg)=—pV—q
—“(pvqg)=—pA—q

De Morgan’s laws

pV(pAq)=p Absorption laws
pApVa)=p

pv-p=T Negation laws
pAr-p=F

TABLE 7 Logical Equivalences
Involving Conditional Statements.

P=>qg=-pVvyg
p>qg=—g—>-p
pPVg=E-p—=gq
pAqg=—(p——q)
“(p—>q)=pA—y
(p=Ap—=r)=p—~I(gAr)
(p=r)Alg—r)=(pvq)—=r
(p=q@vip—=r)=p—=>(qvr)
(p=r)vVig—=nr=paqg) —r

TABLE 8 Logical
Equivalences Involving
Biconditionals.

“(peq)=po—v

peqg=E(p—>q)n(g—p)

peqg=(@rgVipAr—g)




TABLE 1 Rules of Inference.

Rule of Inference Taurtology Name
P [pA(p—9q)]l—q Modus ponens
L |
. q
—q [~¢g A(p— @)= —p Modus tollens
B
=P
p—4q [(p—=q@)A(g—=r)]—=(p—=7r) Hypothetical syllogism
g =>F
p—r
pvyq (pve)n—-pl—q Disjunctive syllogism
B4
.7
P p—=>(pVy) Addition
“PVYq
png (prg)—p Simplification
P
p [(P)YA (@] = (pAg) Conjunction
q
" PAq
pPvVy [(pvg)a(=pVvr)]—(gVr) Resolution
—-pVvr
gV

TABLE 2 Rules of Inference for Quantified Statements.

Rule of Inference Name
w Universal instantiation
. Ple)

P(c) for an arbitrary ¢
VR Px)

Universal generalization

Jx P(x)
.. P(c) for some element ¢

Existential instantiation

P(c) for some element ¢
S AxP(x)

Existential generalization




