
12/8/2011

1

CSE 311 Foundations of

Computing I

Autumn 2011

Lecture 29

Course Summary

Announcements

• Review sessions
– Saturday, Dec 10, 4 pm, EEB 037 (Anderson)
– Sunday, Dec 11, 4 pm, EEB 037 (Beame)

• Answer Catalyst Survey about which time you will
take the final exam (by Sunday).
– Review session Saturday/Sunday
– List of Final Exam Topics and sampling of some typical

kinds of exam questions on the web

• Final exam
– Monday, Dec 12, 2:30-4:20 pm, Gug 220
– Monday, Dec 12, 4:30-6:20 pm, Gug 220

 Autumn 2011 CSE 311 2

About the course

• From the CSE catalog:

– CSE 311 Foundations of Computing I (4)

Examines fundamentals of logic, set theory,

induction, and algebraic structures with

applications to computing; finite state machines;

and limits of computability. Prerequisite: CSE

143; either MATH 126 or MATH 136.

• What this course is about:

– Foundational structures for the practice of

computer science and engineering

Propositional Logic

• Statements with truth values
– The Washington State flag is red

– It snowed in Whistler, BC on January 4,
2011.

– Rick Perry won the Iowa straw poll

– Space aliens landed in Roswell, New
Mexico

– If n is an integer greater than two, then the
equation an + bn = cn has no solutions in
non-zero integers a, b, and c.

– Propositional variables: p, q, r, s, . . .

– Truth values: T for true, F for false

– Compound propositions

Negation (not)  p

Conjunction (and) p  q

Disjunction (or) p  q

Exclusive or p  q

Implication p  q

Biconditional p  q

English and Logic

• You cannot ride the roller coaster if you

are under 4 feet tall unless you are older

than 16 years old

– q: you can ride the roller coaster

– r: you are under 4 feet tall

– s: you are older than 16

(r   s)   q

Logical equivalence

• Terminology: A compound proposition is a
– Tautology if it is always true

– Contradiction if it is always false

– Contingency if it can be either true or false

p   p

p  p

(p  q)  p

(p  q)  (p   q)  ( p  q)  ( p   q)

12/8/2011

2

Logical Equivalence

• p and q are logically equivalent iff
 p  q is a tautology

• The notation p  q denotes p and q are
logically equivalent

• De Morgan’s Laws:

 (p  q)   p   q

 (p  q)   p   q

Digital Circuits

• Computing with logic

– T corresponds to 1 or “high” voltage

– F corresponds to 0 or “low” voltage

• Gates

– Take inputs and produce outputs
• Functions

– Several kinds of gates

– Correspond to propositional connectives
• Only symmetric ones (order of inputs irrelevant)

Combinational Logic Circuits

OR

AND

AND

Wires can send one value to multiple gates

A quick combinational logic

example

• Calendar subsystem: number of days in a

month (to control watch display)

– used in controlling the display of a wrist-watch

LCD screen

– inputs: month, leap year flag

– outputs: number of days

Autumn 2011 CSE 311 10

Implementation as a

combinational digital system
• Encoding:

– how many bits for each input/output?

– binary number for month

– four wires for 28, 29, 30, and 31

Autumn 2011 CSE 311 11

leap month

d28 d29 d30 d31

month leap d28 d29 d30 d31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
1110 – – – – –
1111 – – – – –

Combinational example (cont’d)

• Truth-table to logic to switches to gates

– d28 = “1 when month=0010 and leap=0”

– d28 = m8'•m4'•m2•m1'•leap'

– d31 = “1 when month=0001 or month=0011 or ... month=1100”

– d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + ...

(m8•m4•m2'•m1')

– d31 = can we simplify more?

Autumn 2011 CSE 311 12

month leap d28 d29 d30 d31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
...
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

12/8/2011

3

Combinational example (cont’d)

d28 = m8'•m4'•m2•m1'•leap’

d29 = m8'•m4'•m2•m1'•leap

d30 = (m8'•m4•m2'•m1') + (m8'•m4•m2•m1') +

 (m8•m4'•m2'•m1) + (m8•m4'•m2•m1)

 = (m8'•m4•m1') + (m8•m4'•m1)

d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) +

 (m8'•m4•m2'•m1) + (m8'•m4•m2•m1) +

 (m8•m4'•m2'•m1') + (m8•m4'•m2•m1') +

 (m8•m4•m2'•m1')

Autumn 2011 CSE 311 13

A simple example: 1-bit binary

adder

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out

Autumn 2011 CSE 311 14

A

B

Cin
Cout

S
A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = B Cin + A Cin + A B

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin
 = A’ (B’ Cin + B Cin’) + A (B’ Cin’ + B Cin)

 = A’ Z + A Z’
 = A xor Z = A xor (B xor Cin)

A A A A A

B B B B B

S S S S S

Cin Cout

Boolean algebra

• An algebraic structure consists of
– a set of elements B

– binary operations { + , • }

– and a unary operation { ’ }

– such that the following axioms hold:

 1. the set B contains at least two elements: a, b
2. closure: a + b is in B a • b is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a’ = 1 a • a’ = 0

Autumn 2011 CSE 311 15

George Boole – 1854

Mapping truth tables to logic

gates
• Given a truth table:

1. Write the Boolean expression

2. Minimize the Boolean expression

3. Draw as gates

4. Map to available gates

Autumn 2011 CSE 311 16

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1 F = A’BC’+A’BC+AB’C+ABC

 = A’B(C’+C)+AC(B’+B)

 = A’B+AC

notA

B

A

C

F
F

notA

B

A

C

1

2

3

4

Sum-of-products canonical

forms
• Also known as disjunctive normal form

• Also known as minterm expansion

Autumn 2011 CSE 311 17

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F’ = A’B’C’ + A’BC’ + AB’C’

F = 001 011 101 110 111

+ A’BC + AB’C + ABC’ + ABC A’B’C

Predicate Calculus

• Predicate or Propositional Function
– A function that returns a truth value

• “x is a cat”

• “student x has taken course y”

• “x > y”

•  x P(x) : P(x) is true for every x in the
domain

•  x P(x) : There is an x in the domain for
which P(x) is true

12/8/2011

4

Statements with quantifiers

•  x (Even(x)  Odd(x))

•  x (Even(x)  Prime(x))

•  x  y (Greater(y, x)  Prime(y))

•  x (Prime(x)  (Equal(x, 2)  Odd(x))

•  x  y(Equal(x, y + 2)  Prime(x)  Prime(y))

Even(x)

Odd(x)

Prime(x)

Greater(x,y)

Equal(x,y)

Domain:

Positive Integers

Proofs

• Start with hypotheses and facts

• Use rules of inference to extend set of

facts

• Result is proved when it is included in the

set

Simple Propositional Inference Rules

• Excluded middle

• Two inference rules per binary connective one to

eliminate it, one to introduce it.

Autumn 2011 CSE 311 21

 p  q
∴ p, q

 p, q
∴ p  q

 p
∴ p  q, q  p

 p  q , p
∴ q

p, pq
∴ q

 pq
∴ pq

Direct Proof Rule

∴ p p

Inference Rules for Quantifiers

Autumn 2011 CSE 311 22

 P(c) for some c
∴  x P(x)

  x P(x)
∴ P(a) for any a

 “Let a be anything”...P(a)
∴  x P(x)

  x P(x)
∴ P(c) for some special c

Even and Odd

• Prove: “The square of every odd number is odd”

 English proof of: x (Odd(x)Odd(x2))

 Let x be an odd number.

 Then x=2k+1 for some integer k (depending on x)

 Therefore x2=(2k+1)2= 4k2+4k+1=2(2k2+2k)+1.

 Since 2k2+2k is an integer, x2 is odd. 

Autumn 2011 CSE 311 23

Even(x)  y (x=2y)

Odd(x)  y (x=2y+1)

Domain: Integers

Characteristic vectors

• Let U = {1, . . ., 10}, represent the set
{1,3,4,8,9} with

• Bit operations:

– 0110110100  0011010110 = 0111110110

• ls –l

 drwxr-xr-x ... Documents/

 -rw-r--r-- ... file1

Autumn 2011 CSE 311 24

1011000110

12/8/2011

5

One-time pad

• Alice and Bob privately share random n-bit vector K
– Eve does not know K

• Later, Alice has n-bit message m to send to
Bob
– Alice computes C = m  K

– Alice sends C to Bob

– Bob computes m = C  K which is (m  K)  K

• Eve cannot figure out m from C unless she can guess
K

Autumn 2011 CSE 311 25

Arithmetic mod 7

• a +7 b = (a + b) mod 7

• a 7 b = (a  b) mod 7

 + 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

 X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

Division Theorem

Autumn 2011 CSE 311 27

Let a be an integer and d a positive integer.

Then there are unique integers q and r, with

0 ≤ r < d, such that a = dq + r.

q = a div d r = a mod d

Modular Arithmetic

Autumn 2011 CSE 311 28

Let a and b be integers, and m be a positive integer.

We say a is congruent to b modulo m if m divides a – b.

We use the notation a ≡ b (mod m) to indicate that a is

congruent to b modulo m.

Let a and b be integers, and let m be a positive integer.

Then a ≡ b (mod m) if and only if a mod m = b mod m.

Let m be a positive integer. If a ≡ b (mod m) and

c ≡ d (mod m), then

a + c ≡ b + d (mod m) and

ac ≡ bd (mod m)

Let a and b be integers, and let m be a positive integer.

Then a ≡ b (mod m) if and only if

a mod m = b mod m.

Integer representation

Autumn 2011 CSE 311 29

Signed integer representation
Suppose -2n-1 < x < 2n-1

First bit as the sign, n-1 bits for the value

99: 0110 0011, -18: 1001 0010

Two’s complement representation
Suppose 0 ≤ x < 2n-1,

x is represented by the binary representation of x

-x is represented by the binary representation of 2n-x

99: 0110 0011, -18: 1110 1110

Hashing

• Map values from a large domain, 0…M-1 in a
much smaller domain, 0…n-1

• Index lookup

• Test for equality

• Hash(x) = x mod p

– (or Hash(x) = (ax + b) mod p

• Often want the hash function to depend on all
of the bits of the data

– Collision management

12/8/2011

6

Modular Exponentiation

 X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1 1 1 1 1 1 1

2 2 4 1 2 4 1

3 3 2 6 4 5 1

4 4 2 1 4 2 1

5 5 4 6 2 3 1

6 6 1 6 1 6 1

Arithmetic mod 7

Fast exponentiation
Repeated Squaring

Autumn 2011 CSE 311 32

Primality

An integer p greater than 1 is called prime if the

only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not

prime is called composite.

Fundamental Theorem of Arithmetic: Every

positive integer greater than 1 has a unique

prime factorization

GCD, LCM and Factoring

Autumn 2011 CSE 311 34

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1)

 • 11min(1,0) • 13min(0,1)

LCM(a, b) = 2max(3,1) • 3max(1,2) • 5max(2,3) • 7max(1,1)

 • 11max(1,0) • 13max(0,1)

Euclid’s Algorithm

• GCD(x, y) = GCD(y, x mod y)

int GCD(int a, int b){ /* a >= b, b > 0 */

 int tmp;

 int x = a;

 int y = b;

 while (y > 0){

 tmp = x % y;

 x = y;

 y = tmp;

 }

 return x;

}

Autumn 2011 CSE 311 35

Multiplicative Inverse mod m

Suppose GCD(a, m) = 1

By Bézoit’s Theorem, there exist integers s

and t such that sa + tm = 1.

s is the multiplicative inverse of a:

 1 = (sa + tm) mod m = sa mod m

Autumn 2011 CSE 311 36

12/8/2011

7

Induction proofs

Autumn 2011 CSE 311 37

 P(0)

  k (P(k)  P(k+1))

  n P(n)

1. Prove P(0)

2.Let k be an arbitrary integer ≥ 0

 3. Assume that P(k) is true

 4. ...

 5. Prove P(k+1) is true

6.P(k)  P(k+1) Direct Proof Rule

7.  k (P(k)  P(k+1)) Intro  from 2-6

8.  n P(n) Induction Rule 1&7

Strong Induction

 P(0)

  k ((P(0)  P(1)  P(2)  …  P(k))  P(k+1))

  n P(n)

Recursive definitions of functions

• F(0) = 0; F(n + 1) = F(n) + 1;

• G(0) = 1; G(n + 1) = 2  G(n);

• 0! = 1; (n+1)! = (n+1)  n!

• f0 = 0; f1 = 1; fn = fn-1 + fn-2

Strings

• The set * of strings over the alphabet  is
defined
– Basis:   S ( is the empty string)

– Recursive: if w  *, x  , then wx  *

• Palindromes: strings that are the same
backwards and forwards.
– Basis:  is a palindrome and any a ∈  is a

palindrome

– If p is a palindrome then apa is a palindrome for
every a ∈ 

Function definitions on

recursively defined sets
Len() = 0;

Len(wx) = 1 + Len(w); for w  *, x  

Concat(w, ) = w for w  *

Concat(w1,w2x) = Concat(w1,w2)x for w1, w2 in *, x  

Prove:

Len(Concat(x,y))=Len(x)+Len(y) for all strings x and y

Rooted Binary trees

• Basis: ● is a rooted binary tree

• Recursive Step: If and are rooted

 binary trees
 then so is:

Autumn 2011 CSE 311 42

T1 T2

T1 T2

12/8/2011

8

Functions defined on rooted binary trees

• size(●)=1

• size() = 1+size(T1)+size(T2)

• height(●)=0

• height()=1+max{height(T1),height(T2)}

Autumn 2011 CSE 311 43

T1 T2

T1 T2

Prove:

For every rooted binary tree T, size(T)  2height(T)+1 -1

Regular Expressions over 

• Each is a “pattern” that specifies a set of
strings

• Basis:
– ,  are regular expressions

– a is a regular expression for any a  

• Recursive step:
– If A and B are regular expressions then so are:

• (A  B)

• (AB)

• A*

Autumn 2011 CSE 311 44

Regular Expressions
• 0*

• 0*1*

• (0  1)*

• (0*1*)*

• (0  1)* 0110 (0  1)*

• (0  1)* (0110  100)(0  1)*

Autumn 2011 CSE 311 45

Context-Free Grammars

• Example: S  0S0 | 1S1 | 0 | 1 | 

• Example: S  0S | S1 | 

Autumn 2011 CSE 311 46

Sample Context-Free

Grammars
• Grammar for {0n1n : n≥ 0} all strings with

same # of 0’s and 1’s with all 0’s before

1’s.

• Example: S  (S) | SS | 

 Autumn 2011 CSE 311 47

Building in Precedence in Simple

Arithmetic Expressions

• E – expression (start symbol)

• T – term F – factor I – identifier N - number

E T | E+T

T F | F*T

F (E) | I | N

I  x | y | z

N 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Autumn 2011 CSE 311 48

12/8/2011

9

BNF for C

Autumn 2011 CSE 311 49

Definition of Relations

Let A and B be sets,

A binary relation from A to B is a subset of A  B

Let A be a set,

A binary relation on A is a subset of A  A

R is reflexive iff (a,a)  R for every a  A

R is symmetric iff (a,b)  R implies (b, a) R

R is antisymmetric iff (a,b)  R and a  b implies (b,a)  R

R is transitive iff (a,b) R and (b, c) R implies (a, c)  R

/

Let R be a relation on A

Combining Relations

Let R be a relation from A to B

Let S be a relation from B to C

The composite of R and S, S  R is the relation

from A to C defined

S  R = {(a, c) |  b such that (a,b) R and (b,c) S}

Relations

(a,b) Parent: b is a parent of a

(a,b) Sister: b is a sister of a

Aunt = Sister  Parent

Grandparent = Parent  Parent

R2 = R  R = {(a, c) |  b such that (a,b) R and
(b,c) R}

R0 = {(a,a) | a  A}

R1 = R

Rn+1 = Rn  R

S  R = {(a, c) |  b such that (a,b) R and (b,c) S}

(Anderson, Copernicus)  Advisor23

(Beame, Galileo)  Advisor17

n-ary relations

Student_ID Name GPA

328012098 Knuth 4.00

481080220 Von Neuman 3.78

238082388 Russell 3.85

238001920 Einstein 2.11

1727017 Newton 3.61

348882811 Karp 3.98

2921938 Bernoulli 3.21

2921939 Bernoulli 3.54

Student_ID Major

328012098 CS

481080220 CS

481080220 Mathematics

238082388 Philosophy

238001920 Physics

1727017 Mathematics

348882811 CS

1727017 Physics

2921938 Mathematics

2921939 Mathematics

Let A1, A2, …, An be sets. An n-ary relation on

these sets is a subset of A1 A2 . . .  An.

http://en.wikipedia.org/wiki/File:Nikolaus_Kopernikus.jpg

12/8/2011

10

Matrix representation for

relations
Relation R on A={a1, … ap}

{(1, 1), (1, 2), (1, 4), (2,1), (2,3), (3,2), (3, 3) (4,2) (4,3)}

1 1 0 1

1 0 1 0

0 0 1 0

0 1 1 0

Representation of relations

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

a

d

e

b c

Paths in relations

Autumn 2011 CSE 311 57

Let R be a relation on a set A. There is a path of length

n from a to b if and only if (a,b) Rn

(a,b) is in the transitive-reflexive closure of R if and only

if there is a path from a to b. (Note: by definition, there

is a path of length 0 from a to a.)

Finite state machines

States

Transitions on inputs

Start state and finals states

The language recognized by a machine is

the set of strings that reach a final state

Autumn 2011 CSE 311 58

s0 s2 s3 s1

1 1 1

1

0,1

0

0

0
State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

Accepts strings with an odd number of

1’s and an odd number of 0’s

Autumn 2011 CSE 311 59

s0

s2 s3

s1

1

1

1

1

0

0

0

0

Autumn 2011 CSE 311 60

001 011

111

110

101 010 000

100

1

1
1 0 1

1

1

1

0 0
0

1

0

0

0 0

1 0

00 01 10 11

1
1

1

0

0 0

0 0 0 0
1

1

1

1

Accept strings with

a 1 three positions

from the end

12/8/2011

11

Product construction

– Combining FSMs to check two properties at

once

• New states record states of both FSMs

Autumn 2011 CSE 311 61

s0 s1

0,1

2

2

0,1

t0 t2

t1

2

2

2

0

0

0

1 1

1

s0

t0

s1

t0

s1

t2

s0

t1

s0

t2

s1

t1

2

2

2

2

2

2

1

1

1

1

1

1
0

0 0

0 0

0

State machines with output

Autumn 2011 CSE 311 62

Input Output

State L R

s1 s1 s2 Beep

s2 s1 s3

s3 s2 s4

s4 s3 s4 Beep

S3
S4

S1

S2

R

L

R

L

R

L

L

R

“Tug-of-war”

Beep Beep

Vending Machine

Autumn 2011 CSE 311 63

Enter 15 cents in dimes or nickels

Press S or B for a candy bar

Vending Machine, Buggy

Version

Autumn 2011 CSE 311 64

S

B

5 10

15

15

N

S

S

S

N

N

N

N

N

B

D

D

D

D

D
B

S

S

15

D S

B

B,S

B,S

B,S

B,S
B,S

N

N

N

D

D

D

Vending Machine, Final Version

Autumn 2011 CSE 311 65

0’
B

5 10

15

15’
N

0

0”
S

N

N

N

N

N

B

D

D

D

D

D B

S

S

15”

D S

B

B,S

B,S

B,S

B,S B,S

N

N

N

D

D

D

State minimization

Finite State Machines with output at states

Autumn 2011 CSE 311 66

2

1

3

0

0

1

3 2

2

1

3
0

2

0

3

0

3
2

1

2

3

1

0

S0

[1]

S2

[1]

S4

[1]

S1

[0]

S3

[0]

S5

[0]

1

2

1

3

0

0

1

3

2

2
0

0

3

1,2

S0
[1]

S2
[1]

S1
[0]

S3
[0]

1,3
⇒

12/8/2011

12

Another way to look at DFAs

Autumn 2011 CSE 311 67

s0 s2
s
3

s1

1 1 1

0,1

0

0

0

Lemma: x is in the language recognized by a DFA iff

x labels a path from the start state to some final state

Definition: The label of a path in a DFA is the

concatenation of all the labels on its edges in order

Nondeterministic Finite Automaton

(NFA)
• Graph with start state, final states, edges labeled

by symbols (like DFA) but

– Not required to have exactly 1 edge out of each state

labeled by each symbol - can have 0 or >1

– Also can have edges labeled by empty string 

• Definition: x is in the language recognized by an

NFA iff x labels a path from the start state to

some final state

Autumn 2011 CSE 311 68

s0 s2
s
3

s1

1 1 1

0,1 0,1

Nondeterministic Finite Automaton

s0 s2 s3 s1

0,1 0,1 1

0,1

Accepts strings with a 1 three positions from the

end of the string

Building a NFA from a regular
expression

Autumn 2011 CSE 311 70

(01 1)*0

0








0

1

1











NFA to DFA: Subset construction

Autumn 2011 CSE 311 71

c

a

b

0



0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c



1

0,1

0

0

1

1
0

The set B of binary palindromes
cannot be recognized by any DFA

Consider the infinite set of strings
 S={, 0, 00, 000, 0000, ...}
Claim: No two strings in S can end at the same
 state of any DFA for B, so no such DFA can exist
Proof: Suppose nm and 0n and 0m end at the same
 state p.
 Since 0n10n is in B, following 10n after state p
 must lead to a final state.
 But then the DFA would accept 0m10n
 which is a contradiction

Autumn 2011 CSE 311 72

12/8/2011

13

Cardinality
• A set S is countable iff we can write it as

S={s1, s2, s3, ...} indexed by ℕ

• Set of integers is countable

– {0, 1, -1, 2, -2, 3, -3, 4, . . .}

• Set of rationals is countable

– “dovetailing”

• Σ* is countable

– {0,1}* = {0,1,00,01,10,11,000,001,010,011,100,101,...}

• Set of all (Java) programs is countable

Autumn 2011 CSE 311 73

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...

2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 ...

3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 ...

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 ...

5/1 5/2 5/3 5/4 5/5 5/6 5/7 ...

6/1 6/2 6/3 6/4 6/5 6/6 ...

7/1 7/2 7/3 7/4 7/5

...

The real numbers are not
countable

• “diagonalization”

Autumn 2011 CSE 311 74

75

General models of computation

Control structures with infinite storage
Many models
 Turing machines
 Functional
 Recursion
 Java programs

Church-Turing Thesis

Any reasonable model of computation that includes all possible
algorithms is equivalent in power to a Turing machine

What is a Turing Machine?

Autumn 2011 CSE 311 76

77

Halting Problem

• Given: the code of a program P and an input x
 for P, i.e. given (<P>,x)

• Output: 1 if P halts on input x
 0 if P does not halt on input x

Theorem (Turing): There is no program that
solves the halting problem
“The halting problem is undecidable”

D halts on input <D>

⇔ H outputs 1 on input (<D>,<D>)

 [since H solves the halting problem and so
 H(<D>,x) outputs 1 iff D halts on input x]

⇔ D runs forever on input <D>

 [since D goes into an infinite loop on x iff H(x,x)=1]

Autumn 2011 CSE 311 78

 Function D(x):
if H(x,x)=1 then

while (true); /* loop forever */

else

no-op; /* do nothing and halt */

endif

Does D halt on input <D>?

Suppose H(<p>,x) solves the Halting problem

12/8/2011

14

79

Does a program have a divide by 0 error?

Input: A program <P> and an input string x

Output: 1 if P has a divide by 0 error on input x

 0 otherwise

 Claim: The divide by zero problem is
undecidable

80

Program equivalence

Input: the codes of two programs, <P> and <Q>

Output: 1 if P produces the same output
 as Q does on every input

 0 otherwise

Claim: The equivalent program
 problem is undecidable

That’s all folks!

Autumn 2011 CSE 311 81

Teaching evaluation

• Please answer the questions on both sides of
the form. This includes the ABET questions on
the back

Autumn 2011 CSE 311 82

