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CSE 311  Foundations of 

Computing I 

Autumn 2011 

Lecture 29 

Course Summary 

Announcements 

• Review sessions 
– Saturday, Dec 10, 4 pm, EEB 037 (Anderson) 
– Sunday, Dec 11, 4 pm, EEB 037 (Beame) 

• Answer Catalyst Survey about which time you will 
take the final exam (by Sunday). 
– Review session Saturday/Sunday 
– List of Final Exam Topics and sampling of some typical 

kinds of exam questions on the web 

• Final exam 
– Monday, Dec 12, 2:30-4:20 pm,  Gug 220 
– Monday, Dec 12, 4:30-6:20 pm, Gug 220 
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About the course 

• From the CSE catalog: 

– CSE 311 Foundations of Computing I (4)  

Examines fundamentals of logic, set theory, 

induction, and algebraic structures with 

applications to computing; finite state machines; 

and limits of computability. Prerequisite: CSE 

143; either MATH 126 or MATH 136.  

• What this course is about: 

– Foundational structures for the practice of 

computer science and engineering 

 

Propositional Logic 

• Statements with truth values 
– The Washington State flag is red 

– It snowed in Whistler, BC on January 4, 
2011. 

– Rick Perry won the Iowa straw poll 

– Space aliens landed in Roswell, New 
Mexico 

– If n is an integer greater than two, then the 
equation an + bn = cn has no solutions in 
non-zero integers a, b, and c. 

– Propositional variables: p, q, r, s, . . .  

– Truth values: T for true,  F for false 

– Compound propositions 
 

Negation (not)         p 

Conjunction (and)  p  q 

Disjunction (or)      p  q 

Exclusive or           p  q 

Implication             p  q 

Biconditional          p  q 

English and Logic 

• You cannot ride the roller coaster if you 

are under 4 feet tall unless you are older 

than 16 years old 

– q: you can ride the roller coaster 

– r: you are under 4 feet tall 

– s: you are older than 16 

( r   s)   q 

Logical equivalence 

• Terminology:  A compound proposition is a 
– Tautology if it is always true 

– Contradiction if it is always false 

– Contingency if it can be either true or false 

 

 
 

p   p 
 

p  p 
 

(p  q)  p 
 

(p  q)  (p   q)  ( p  q)  ( p   q)  
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Logical Equivalence 

• p and q are logically equivalent iff           
                           p  q is a tautology 

• The notation p  q denotes p and q are 
logically equivalent 

 

 

• De Morgan’s Laws: 

 

 
 

 

 (p  q)   p   q 

 (p  q)   p   q 

 

Digital Circuits 

• Computing with logic 

– T  corresponds to 1 or “high” voltage  

–  F corresponds to  0 or “low” voltage 
 

• Gates  

– Take inputs and produce outputs 
• Functions 

– Several kinds of gates 

– Correspond to propositional connectives 
• Only symmetric ones (order of inputs irrelevant) 

 

 

Combinational Logic Circuits 

OR 

AND 

AND 

Wires can send one value to multiple gates 

A quick combinational logic 

example 

• Calendar subsystem: number of days in a 

month (to control watch display) 

– used in controlling the display of a wrist-watch 

LCD screen 

 

– inputs: month, leap year flag 

– outputs: number of days 
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Implementation as a 

combinational digital system 
• Encoding: 

– how many bits for each input/output? 

– binary number for month 

– four wires for 28, 29, 30, and 31 
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leap month 

d28 d29 d30 d31 

month leap d28 d29 d30 d31 
0000 – – – – –  
0001 – 0 0 0 1 
0010 0 1 0 0 0 
0010 1 0 1 0 0 
0011 – 0 0 0 1 
0100 – 0 0 1 0 
0101 – 0 0 0 1 
0110 – 0 0 1 0 
0111 – 0 0 0 1 
1000 – 0 0 0 1 
1001 – 0 0 1 0 
1010 – 0 0 0 1 
1011 – 0 0 1 0 
1100 – 0 0 0 1 
1101 – – – – – 
1110 – – – – – 
1111 – – – – – 
 

Combinational example (cont’d) 

• Truth-table to logic to switches to gates 

– d28 = “1 when month=0010 and leap=0” 

– d28 = m8'•m4'•m2•m1'•leap' 

 

– d31 = “1 when month=0001 or month=0011 or ... month=1100” 

– d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + ... 

(m8•m4•m2'•m1') 

– d31 = can we simplify more? 
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month leap d28 d29 d30 d31 
0000 – – – – – 
0001 – 0 0 0 1 
0010 0 1 0 0 0 
0010 1 0 1 0 0 
0011 – 0 0 0 1 
0100 – 0 0 1 0 
... 
1100 – 0 0 0 1 
1101 – – – – – 
111– – – – – – 
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Combinational example (cont’d) 

d28 = m8'•m4'•m2•m1'•leap’ 

d29 = m8'•m4'•m2•m1'•leap 

d30 = (m8'•m4•m2'•m1') + (m8'•m4•m2•m1') +      

          (m8•m4'•m2'•m1) + (m8•m4'•m2•m1)  

       = (m8'•m4•m1') + (m8•m4'•m1) 

d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) +  

          (m8'•m4•m2'•m1) + (m8'•m4•m2•m1) +  

          (m8•m4'•m2'•m1') + (m8•m4'•m2•m1') +  

          (m8•m4•m2'•m1') 
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A simple example: 1-bit binary 

adder 

• Inputs: A, B, Carry-in 

• Outputs: Sum, Carry-out 
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A 

B 

Cin 
Cout 

S 
A B Cin Cout S 
0 0 0      
0 0 1         
0 1 0      
0 1 1 
1 0 0      
1 0 1         
1 1 0      
1 1 1      

0 
1 
1 
0 
1 
0 
0 
1 

0 
0 
0 
1 
0 
1 
1 
1 

Cout = B Cin  +  A Cin  +  A B  

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin 
   = A’ (B’ Cin + B Cin’ ) + A (B’ Cin’ + B Cin ) 

   = A’ Z + A Z’ 
   = A xor Z = A xor (B xor Cin) 

A A A A A 

B B B B B 

S S S S S 

Cin Cout 

Boolean algebra 

• An algebraic structure consists of 
– a set of elements B 

– binary operations { + , • } 

– and a unary operation { ’ } 

– such that the following axioms hold: 
 

 1. the set B contains at least two elements: a, b 
2. closure: a + b   is in B a • b   is in B 
3. commutativity: a + b = b + a a • b = b • a 
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c 
5. identity: a + 0 = a a • 1 = a 
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c) 
7. complementarity: a + a’ = 1 a • a’ = 0 
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George Boole – 1854 

Mapping truth tables to logic 

gates 
• Given a truth table: 

1. Write the Boolean expression 

2. Minimize the Boolean expression 

3. Draw as gates 

4. Map to available gates 

 

Autumn 2011 CSE 311 16 

A B C    F 

0 0 0    0 

0 0 1    0 

0 1 0    1 

0 1 1    1 

1 0 0    0 

1 0 1    1 

1 1 0    0 

1 1 1    1 F = A’BC’+A’BC+AB’C+ABC 

   = A’B(C’+C)+AC(B’+B) 

   = A’B+AC 

notA

B

A

C

F
F

notA

B

A

C

1 

2 

3 

4 

Sum-of-products canonical 

forms 
• Also known as disjunctive normal form 

• Also known as minterm expansion 
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A B C F F’ 
0 0 0 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 0 

F = 

F’ = A’B’C’ + A’BC’ + AB’C’ 

F =  001      011      101       110       111 
 

+ A’BC + AB’C + ABC’ + ABC A’B’C 

Predicate Calculus 

• Predicate or Propositional Function 
– A function that returns a truth value 

• “x is a cat” 

• “student x has taken course y” 

• “x > y” 

•  x P(x) : P(x) is true for every x in the 
domain 

•   x P(x) : There is an x in the domain for 
which P(x) is true 
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Statements with quantifiers 

•  x (Even(x)  Odd(x)) 

 

•  x (Even(x)  Prime(x)) 

 

•  x  y (Greater(y, x)  Prime(y)) 

 

•  x (Prime(x)  (Equal(x, 2)  Odd(x)) 

 

•  x  y(Equal(x, y + 2)  Prime(x)  Prime(y))  

 

Even(x) 

Odd(x) 

Prime(x) 

Greater(x,y) 

Equal(x,y) 

Domain: 

Positive Integers 

Proofs 

• Start with hypotheses and facts 

• Use rules of inference to extend set of 

facts 

• Result is proved when it is included in the 

set 

Simple Propositional Inference Rules 

• Excluded middle  
 

• Two inference rules per binary connective one to 

eliminate it, one to introduce it. 
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   p  q  
∴ p, q 

     p, q    
∴ p  q  

            p            
∴ p  q, q  p 

 p  q , p 
∴ q 

p, pq 
∴  q 

   pq   
∴ pq 

Direct Proof Rule 

                    
∴  p p  

Inference Rules for Quantifiers 
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   P(c) for some c 
∴  x P(x) 

        x P(x)         
∴ P(a) for any a 

 “Let a be anything”...P(a) 
∴  x P(x) 

                  x P(x)                
∴ P(c) for some special c 

Even and Odd 
 

• Prove: “The square of every odd number is odd” 

    English proof of: x (Odd(x)Odd(x2)) 
 

   Let x be an odd number. 

   Then x=2k+1 for some integer k (depending on x) 

   Therefore x2=(2k+1)2= 4k2+4k+1=2(2k2+2k)+1. 

   Since 2k2+2k is an integer, x2 is odd.     
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Even(x)  y  (x=2y)      

Odd(x)  y  (x=2y+1) 

Domain: Integers  

Characteristic vectors 

• Let U = {1, . . ., 10}, represent the set 
{1,3,4,8,9} with  

 
 

• Bit operations:  

– 0110110100  0011010110 = 0111110110 

• ls –l 

    drwxr-xr-x ... Documents/ 

    -rw-r--r-- ... file1 
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1011000110 
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One-time pad 

• Alice and Bob privately share random n-bit vector K  
– Eve does not know K 

 

• Later, Alice has n-bit message m to send to 
Bob 
– Alice computes  C = m  K 

– Alice sends C to Bob 

– Bob computes m = C  K which is (m  K)  K 

 

• Eve cannot figure out m from C unless she can guess 
K 
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Arithmetic mod 7 

• a +7 b = (a + b) mod 7 

• a 7 b = (a  b) mod 7 

 + 0 1 2 3 4 5 6 

0 0 1 2 3 4 5 6 

1 1 2 3 4 5 6 0 

2 2 3 4 5 6 0 1 

3 3 4 5 6 0 1 2 

4 4 5 6 0 1 2 3 

5 5 6 0 1 2 3 4 

6 6 0 1 2 3 4 5 

 X 0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 

2 0 2 4 6 1 3 5 

3 0 3 6 2 5 1 4 

4 0 4 1 5 2 6 3 

5 0 5 3 1 6 4 2 

6 0 6 5 4 3 2 1 

Division Theorem 
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Let a be an integer and d a positive integer.  

Then there are unique integers q and r, with 

0 ≤ r < d, such that a = dq + r. 

q = a div d            r = a mod d 

Modular Arithmetic 
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Let a and b be integers, and m be a positive integer.  

We say a is congruent to b modulo m if m divides a – b.  

We use the notation a ≡ b (mod m) to indicate that a is 

congruent to b modulo m. 

Let a and b be integers, and let m be a positive integer.  

Then a ≡ b (mod m) if and only if a mod m = b mod m. 

Let m be a positive integer.  If a ≡ b (mod m) and      

c ≡ d (mod m), then 

a + c ≡ b + d (mod m)    and       

ac ≡ bd (mod m) 

Let a and b be integers, and let m be a positive integer.  

Then a ≡ b (mod m) if and only if  

a mod m = b mod m. 

Integer representation 
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Signed integer representation 
Suppose -2n-1 < x < 2n-1 

First bit as the sign, n-1 bits for the value 

 

99:     0110  0011,              -18:   1001  0010 

 

Two’s complement representation 
Suppose 0 ≤ x < 2n-1,   

x is represented by the binary representation of x 

-x is represented by the binary representation of 2n-x 

 

99:     0110  0011,              -18:   1110 1110 

Hashing 

• Map values from a large domain, 0…M-1 in a 
much smaller domain, 0…n-1 

• Index lookup 

• Test for equality 

• Hash(x) = x mod p   

– (or Hash(x) = (ax + b) mod p 

• Often want the hash function to depend on all 
of the bits of the data  

– Collision management 
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Modular Exponentiation 

 X 1 2 3 4 5 6 

1 1 2 3 4 5 6 

2 2 4 6 1 3 5 

3 3 6 2 5 1 4 

4 4 1 5 2 6 3 

5 5 3 1 6 4 2 

6 6 5 4 3 2 1 

a a1 a2 a3 a4 a5 a6 

1  1  1  1  1  1  1 

2  2  4  1  2  4  1 

3  3  2  6  4  5  1 

4  4  2 1   4  2  1 

5  5  4  6  2  3  1 

6  6  1  6  1  6  1 

Arithmetic mod 7 

Fast exponentiation 
Repeated Squaring 
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Primality 

An integer p greater than 1 is called prime if the 

only positive factors of p are 1 and p. 

A positive integer that is greater than 1 and is not 

prime is called composite. 

Fundamental Theorem of Arithmetic: Every 

positive integer greater than 1 has a unique 

prime factorization 

GCD, LCM and Factoring 
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a = 23 • 3 • 52 • 7 • 11 = 46,200 

b = 2 • 32 • 53 • 7 • 13 = 204,750 

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1)  

                                      • 11min(1,0) • 13min(0,1) 

LCM(a, b) = 2max(3,1) • 3max(1,2) • 5max(2,3) • 7max(1,1)  

                                      • 11max(1,0) • 13max(0,1) 

Euclid’s Algorithm 

• GCD(x, y) = GCD(y, x mod y) 

 

 
int GCD(int a, int b){   /* a >= b,   b > 0 */ 

 int tmp; 

 int x = a; 

 int y = b; 

 while (y > 0){ 

  tmp = x % y; 

  x = y; 

  y = tmp; 

 } 

 return x; 

} 
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Multiplicative Inverse mod m 

Suppose GCD(a, m) = 1 

 

By Bézoit’s Theorem, there exist integers s 

and t such that sa + tm = 1. 

 

s is the multiplicative inverse of a: 

 1 = (sa + tm) mod m = sa mod m 
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Induction proofs 
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    P(0) 

     k (P(k)  P(k+1)) 

  n P(n) 

1. Prove P(0) 

2.Let k be an arbitrary integer ≥ 0 

           3.  Assume that P(k) is true 

           4.  ... 

           5.  Prove P(k+1) is true 

6.P(k)   P(k+1)                         Direct Proof Rule 

7.  k (P(k)  P(k+1))                 Intro  from 2-6 

8.  n P(n)                                   Induction Rule 1&7 

Strong Induction 

    P(0) 

     k ((P(0)  P(1)  P(2)  …  P(k))  P(k+1)) 

  n P(n) 

Recursive definitions of functions 

• F(0) = 0;  F(n + 1) = F(n) + 1; 

 

• G(0) = 1;  G(n + 1) =  2  G(n); 

 

• 0! = 1;  (n+1)! = (n+1)  n! 

 

• f0 = 0; f1 = 1; fn = fn-1 + fn-2 

Strings 

• The set * of strings over the alphabet  is 
defined 
– Basis:    S  ( is the empty string) 

– Recursive:  if w  *, x  , then wx  * 

 

• Palindromes: strings that are the same 
backwards and forwards. 
– Basis:  is a palindrome and any a ∈  is a 

palindrome 

– If p is a palindrome then apa is a palindrome for 
every a ∈  

 

 

Function definitions on 

recursively defined sets 
Len() = 0; 

Len(wx) = 1 + Len(w); for w  *, x   

 

 

Concat(w, ) = w for w  * 

Concat(w1,w2x) = Concat(w1,w2)x for w1, w2 in *, x   

 

Prove: 

Len(Concat(x,y))=Len(x)+Len(y) for all strings x and y 

Rooted Binary trees 

• Basis:   ●  is a rooted binary tree 

 

• Recursive Step:   If             and          are rooted  

                                                                                                    
 binary trees                                                            
 then so is:    
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T1 T2 

T1 T2 
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Functions defined on rooted binary trees 

• size(●)=1 

 

• size(              ) = 1+size(T1)+size(T2) 
 

• height(●)=0 
 

• height(             )=1+max{height(T1),height(T2)} 
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T1 T2 

T1 T2 

Prove: 

For every rooted binary tree T, size(T)  2height(T)+1 -1 

Regular Expressions over  

• Each is a “pattern” that specifies a set of 
strings 

• Basis: 
– ,  are regular expressions 

– a is a regular expression for any a   

• Recursive step: 
– If A and B are regular expressions then so are: 

• (A  B) 

•  (AB) 

• A* 
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Regular Expressions 
• 0*     

 

• 0*1* 
 

• (0  1)*  

                     

• (0*1*)* 
 

 

• (0  1)* 0110 (0  1)* 
 

 

• (0  1)* (0110  100)(0  1)* 
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Context-Free Grammars 

• Example:       S  0S0 | 1S1 | 0 | 1 |  

 

 

 

• Example:      S  0S | S1 |  
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Sample Context-Free 

Grammars 
• Grammar for {0n1n : n≥ 0}  all strings with 

same # of 0’s and 1’s with all 0’s before 

1’s. 

 

 

• Example:       S  (S) | SS  |   
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Building in Precedence in Simple 

Arithmetic Expressions 

• E – expression  (start symbol) 

• T – term   F – factor   I – identifier  N - number 

E T | E+T 

T F | F*T 

F (E) | I | N 

I  x | y | z 

N 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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BNF for C 
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Definition of Relations 

Let A and B be sets,   

A binary relation from A to B is a subset of A  B 

Let A be a set, 

A binary relation on A is a subset of A  A 

R is reflexive iff (a,a)  R for every a  A 

R is symmetric iff (a,b)  R implies (b, a) R 

R is antisymmetric iff (a,b)  R and a  b implies (b,a)  R 

R is transitive iff (a,b) R and (b, c) R implies (a, c)  R 

/ 

Let R be a relation on A 

Combining Relations 

Let R be a relation from A to B 

Let S be a relation from B to C 

The composite of R and S,  S  R is the relation  

from A to C defined 

 

S  R = {(a, c) |  b such that (a,b) R and (b,c) S} 

Relations 

(a,b) Parent:  b is a parent of a 

(a,b) Sister:  b is a sister of a 

Aunt = Sister  Parent 

Grandparent = Parent  Parent 

 

R2 = R  R = {(a, c) |  b such that (a,b) R and 
(b,c) R} 

 

R0 = {(a,a) | a  A} 

R1 = R 

Rn+1 = Rn  R 

 

 
S  R = {(a, c) |  b such that (a,b) R and (b,c) S} 

(Anderson, Copernicus)  Advisor23 

(Beame, Galileo)  Advisor17 

n-ary relations 

Student_ID Name GPA 

328012098 Knuth 4.00 

481080220 Von Neuman 3.78 

238082388 Russell 3.85 

238001920 Einstein 2.11 

1727017 Newton 3.61 

348882811 Karp 3.98 

2921938 Bernoulli 3.21 

2921939 Bernoulli 3.54 

Student_ID Major 

328012098 CS 

481080220 CS 

481080220 Mathematics 

238082388 Philosophy 

238001920 Physics 

1727017 Mathematics 

348882811 CS 

1727017 Physics 

2921938 Mathematics 

2921939 Mathematics 

Let A1, A2, …, An be sets.  An n-ary relation on  

these sets is a subset of A1 A2 . . .  An. 

http://en.wikipedia.org/wiki/File:Nikolaus_Kopernikus.jpg
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Matrix representation for 

relations 
Relation R on  A={a1, … ap}   

{(1, 1), (1, 2),  (1, 4),  (2,1),  (2,3), (3,2), (3, 3) (4,2) (4,3)} 

1 1 0 1 

1 0 1 0 

0 0 1 0 

0 1 1 0 

Representation of relations 

Directed Graph Representation   (Digraph) 

{(a, b),  (a, a),  (b, a), (c, a),  (c, d),  (c, e) (d, e) } 

a 

d 

e 

b c 

Paths in relations 
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Let R be a relation on a set A.  There is a path of length 

n from a to b if and only if (a,b) Rn 

(a,b) is in the transitive-reflexive closure of R if and only 

if there is a path from a to b.  (Note: by definition, there 

is a path of length 0 from a to a.) 

Finite state machines 

States 

Transitions on inputs 

Start state and finals states 

The language recognized by a machine is 

the set of strings that reach a final state 
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s0 s2 s3 s1 

1 1 1 

1 

0,1 

0 

0 

0 
State 0 1 

s0 s0 s1 

s1 s0 s2 

s2 s0 s3 

s3 s3 s3 

Accepts strings with an odd number of 

1’s and an odd number of 0’s 
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s0 

s2 s3 

s1 

1 

1 

1 

1 

0 

0 

0 

0 
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001 011 

111 

110 

101 010 000 

100 

1 

1 
1 0 1 

1 

1 

1 

0 0 
0 

1 

0 

0 

0 0 

1 0 

00 01 10 11 

1 
1 

1 

0 

0 0 

0 0 0 0 
1 

1 

1 

1 

Accept strings with 

a 1 three positions 

from the end 
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Product construction 

– Combining FSMs to check two properties at 

once 

• New states record states of both FSMs 
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s0 s1 

0,1 

2 

2 

0,1 

t0 t2 

t1 

2 

2 

2 

0 

0 

0 

1 1 

1 

s0

t0 

s1

t0 

s1

t2 

s0

t1 

s0

t2 

s1

t1 

2 

2 

2 

2 

2 

2 

1 

1 

1 

1 

1 

1 
0 

0 0 

0 0 

0 

State machines with output 

Autumn 2011 CSE 311 62 

Input Output 

State L  R 

s1 s1 s2 Beep 

s2 s1 s3 

s3 s2 s4 

s4 s3 s4 Beep 

S3 
S4 

 

S1 

 
S2 

R 

L 

R 

L 

R 

L 

L 

R 

“Tug-of-war” 

Beep Beep 

Vending Machine 

Autumn 2011 CSE 311 63 

Enter 15 cents in dimes or nickels 

Press S or B for a candy bar 

Vending Machine, Buggy 

Version 
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S   

B 

5 10 

15 

15 

N 

S 

S     

S 

N 

N 

N 

N 

N 

B 

D 

D 

D 

D 

D 
B 

S 

S 

15 

D S 

B 

B,S 

B,S 

B,S 

B,S 
B,S 

N 

N 

N 

D 

D 

D 

Vending Machine, Final Version 
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0’   
B 

5 10 

15 

15’ 
N 

0 

0”     
S 

N 

N 

N 

N 

N 

B 

D 

D 

D 

D 

D B 

S 

S 

15” 

D S 

B 

B,S 

B,S 

B,S 

B,S B,S 

N 

N 

N 

D 

D 

D 

State minimization 

Finite State Machines with output at states 
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2 

1 

3 

0 

0 

1 

3 2 

2 

1 

3 
0 

2 

0 

3 

0 

3 
2 

1 

2 

3 

1 

0 

S0 

[1] 

S2 

[1] 

S4 

[1] 

S1 

[0] 

S3 

[0] 

S5 

[0] 

1 

2 

1 

3 

0 

0 

1 

3 

2 

2 
0 

0 

3 

1,2 

S0 
[1] 

S2 
[1] 

S1 
[0] 

S3 
[0] 

1,3 
⇒ 
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Another way to look at DFAs 
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s0 s2 
s
3 

s1 

1 1 1 

0,1 

0 

0 

0 

Lemma:  x is in the language recognized by a DFA iff  

x labels a path from the start state to some final state 

Definition: The label of a path in a DFA is the  

concatenation of all the labels on its edges in order 

Nondeterministic Finite Automaton 

(NFA) 
• Graph with start state, final states, edges labeled 

by symbols (like DFA) but 

– Not required to have exactly 1 edge out of each state 

labeled by each symbol  - can have 0 or >1 

– Also can have edges labeled by empty string  

• Definition: x is in the language recognized by an 

NFA iff x labels a path from the start state to 

some final state 
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s0 s2 
s
3 

s1 

1 1 1 

0,1 0,1 

Nondeterministic Finite Automaton 

s0 s2 s3 s1 

0,1 0,1 1 

0,1 

Accepts strings with a 1 three positions from the 

end of the string 

Building a NFA from a regular 
expression 
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(01 1)*0 

0 

 
 

 

 

0 

1 

1 

 

 

 

 

 

NFA to DFA: Subset construction 
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c 

a 

b 

0 

 

0,1 

1 

0 

NFA 

a,b  

DFA 

0 

c  

1 

b  

b,c  

1 

0 

a,b,c  

 

1 

0,1 

0 

0 

1 

1 
0 

The set B of binary palindromes 
cannot be recognized by any DFA 

Consider the infinite set of strings 
             S={, 0, 00, 000, 0000, ...} 
Claim: No two strings in S can end at the same      
  state of any DFA for B, so no such DFA can exist 
Proof: Suppose nm and 0n and 0m end at the same            
   state p.    
  Since 0n10n is in B, following 10n after state p   
  must lead to a final state. 
            But then the DFA would accept 0m10n  
      which is a contradiction 
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12/8/2011 

13 

Cardinality 
• A set S is countable iff we can write it as               

S={s1, s2, s3, ...} indexed by ℕ 

• Set of integers is countable 

– {0, 1, -1, 2, -2, 3, -3, 4, . . .} 

• Set of rationals is countable 

– “dovetailing” 

 

• Σ* is countable 

– {0,1}* = {0,1,00,01,10,11,000,001,010,011,100,101,...} 
 

• Set of all (Java) programs is countable 
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1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ... 

2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 ... 

3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 ... 

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 ... 

5/1 5/2 5/3 5/4 5/5 5/6 5/7 ... 

6/1 6/2 6/3 6/4 6/5 6/6 ... 

7/1 7/2 7/3 7/4 7/5 .... 

... ... ... ... ... 

The real numbers are not 
countable 

• “diagonalization” 
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General models of computation 

Control structures with infinite storage 
Many models 
 Turing machines 
 Functional 
 Recursion 
 Java programs 
 
 
Church-Turing Thesis 

Any reasonable model of computation that includes all possible 
algorithms is equivalent in power to a Turing machine 
 

What is a Turing Machine? 
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Halting Problem 

• Given: the code of a program P and an input x  
        for P, i.e. given (<P>,x) 

• Output: 1 if P halts on input x                            
          0 if P does not halt on input x 

 

Theorem (Turing):  There is no program that 
solves the halting problem                                   
“The halting problem is undecidable” 

D halts on input <D> 

⇔ H outputs 1 on input (<D>,<D>)  

        [since H solves the halting problem and so       
     H(<D>,x) outputs 1 iff D halts on input x] 

⇔ D runs forever on input <D> 

        [since D goes into an infinite loop on x iff H(x,x)=1] 
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   Function D(x): 
if H(x,x)=1 then 

while (true); /* loop forever */ 

else 

no-op; /* do nothing and halt */ 

endif 

Does D halt on input <D>? 

Suppose H(<p>,x) solves the Halting problem 
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Does a program have a divide by 0 error? 

Input:  A program <P> and an input string x 

Output: 1 if P has a divide by 0 error on input x 

               0 otherwise 

 

 Claim: The divide by zero problem is   
undecidable 

80 

Program equivalence 

Input:  the codes of two programs, <P> and <Q> 

Output: 1 if P produces the same output                  
                  as Q does on every input 

                   0 otherwise 

 

 
Claim: The equivalent program           
     problem is undecidable 

That’s all folks! 
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Teaching evaluation 

• Please answer the questions on both sides of 
the form.  This includes the ABET questions on 
the back 
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