CSE 311 Foundations of Computing I

Autumn 2011 Lecture 29 Course Summary

Announcements

- · Review sessions
 - Saturday, Dec 10, 4 pm, EEB 037 (Anderson)
 Sunday, Dec 11, 4 pm, EEB 037 (Beame)
- Answer Catalyst Survey about which time you will
 - take the final exam (by Sunday).
 - Review session Saturday/Sunday
 - List of Final Exam Topics and sampling of some typical kinds of exam questions on the web

CSE 311

Final exam

Autumn 2011

- Monday, Dec 12, 2:30-4:20 pm, Gug 220
- Monday, Dec 12, 4:30-6:20 pm, Gug 220

About the course

- From the CSE catalog:
 - CSE 311 Foundations of Computing I (4) Examines fundamentals of logic, set theory, induction, and algebraic structures with applications to computing; finite state machines; and limits of computability. Prerequisite: CSE 143; either MATH 126 or MATH 136.
- · What this course is about:
 - Foundational structures for the practice of computer science and engineering

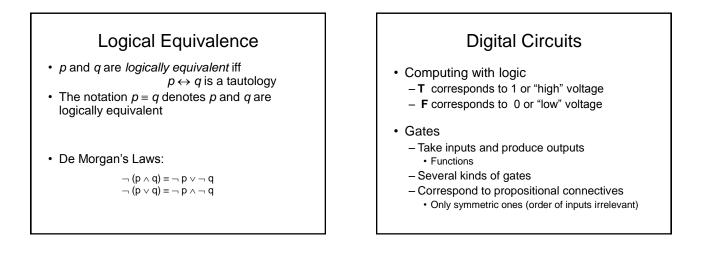
Propositional Logic Statements with truth values The Washington State flag is red It snowed in Whistler, BC on January 4, 2011. Rick Perry won the lowa straw poll Space aliens landed in Roswell, New Mexico If n is an integer greater than two, then the equation aⁿ + bⁿ = cⁿ has no solutions in non-zero integers a, b, and c. Propositional variables: p, q, r, s, Truth values: T for true, F for false

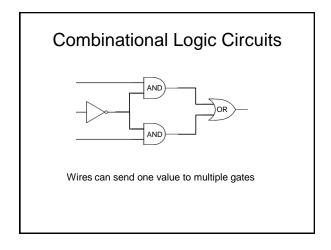
- Compound propositions
- Negation (not) \neg pConjunction (and) $p \land q$ Disjunction (or) $p \lor q$ Exclusive or $p \oplus q$ Implication $p \rightarrow q$ Biconditional $p \leftrightarrow q$

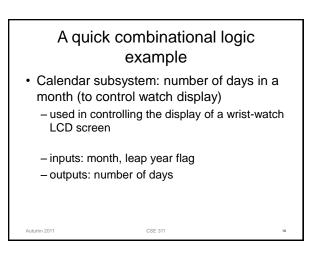
English and Logic You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old *q*: you can ride the roller coaster *r*: you are under 4 feet tall *s*: you are older than 16

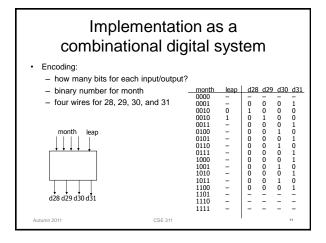
 $(r \land \neg s) \rightarrow \neg q$

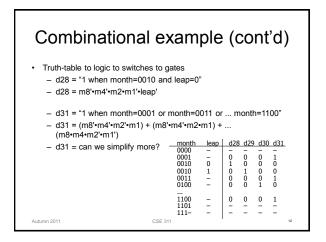
Logical equivalence

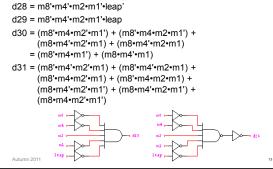

- Terminology: A compound proposition is a – Tautology if it is always true
 - Contradiction if it is always false
 - Contingency if it can be either true or false

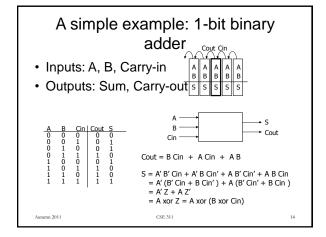

 $p \lor \neg p$

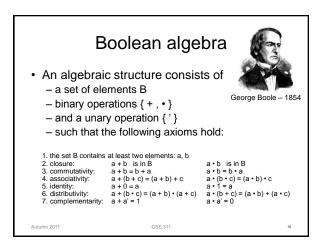

p⊕p

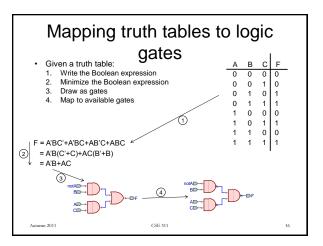

 $(p \rightarrow q) \land p$

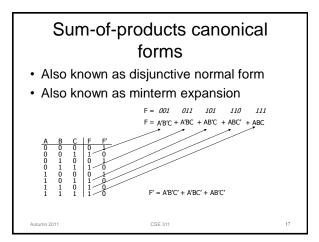

 $(p \land q) \lor (p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$

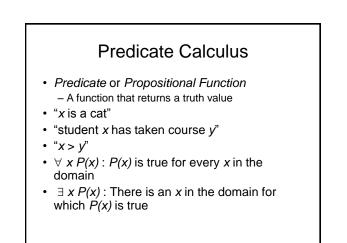






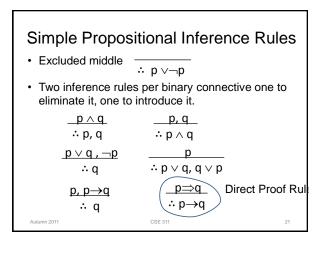


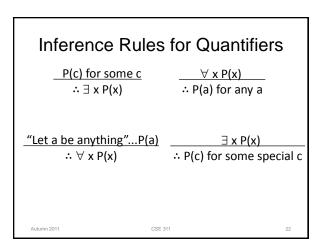

Combinational example (cont'd)

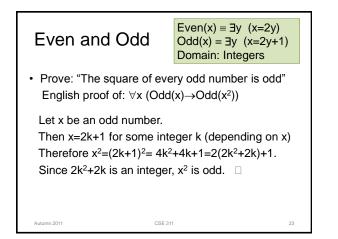


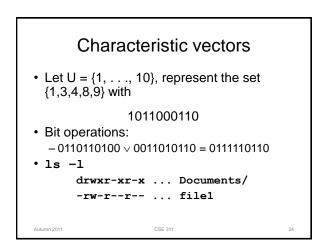
Statements with quantifiers

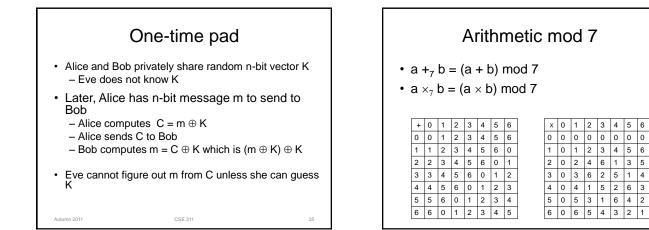
Even(x) Odd(x)

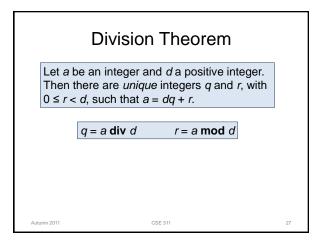

Prime(x)

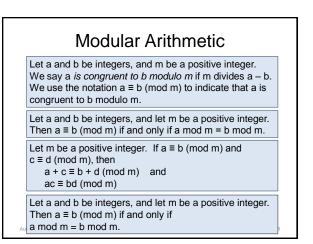

Greater(x, y) Equal(x, y)

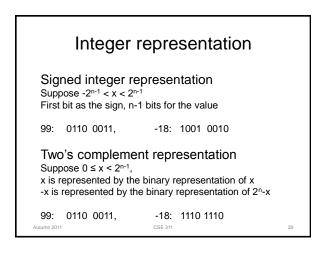

- $\forall x (Even(x) \lor Odd(x))$
- ∃ *x* (Even(*x*) ∧ Prime(*x*))
- $\forall x \exists y (Greater(y, x) \land Prime(y))$
- $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x))$
- $\exists x \exists y (Equal(x, y + 2) \land Prime(x) \land Prime(y))$

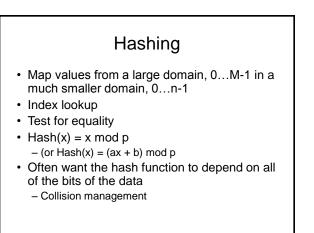

Proofs

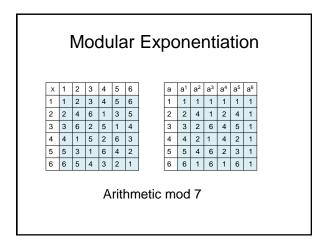

- · Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

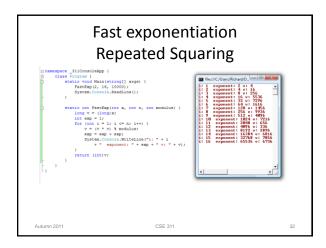


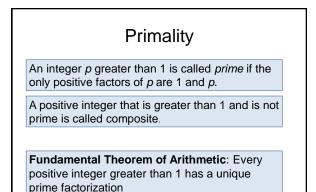


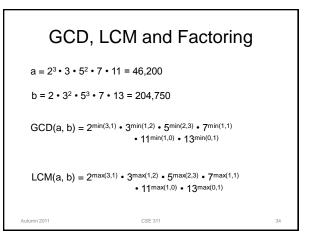


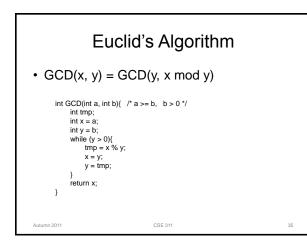


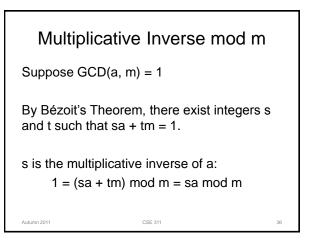


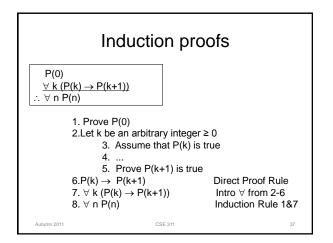


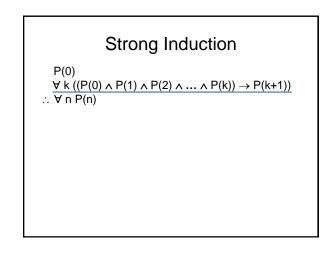


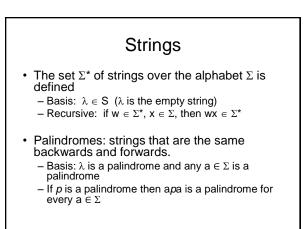




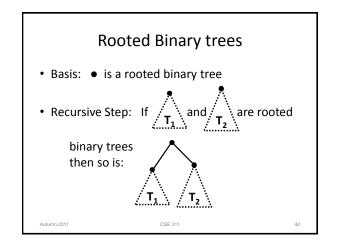


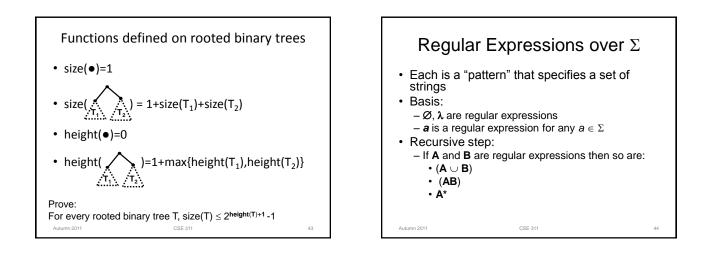


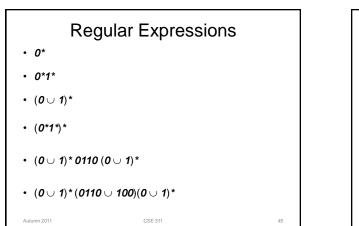


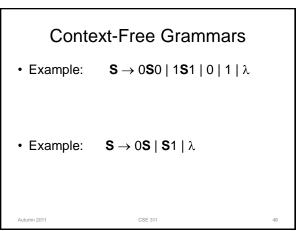


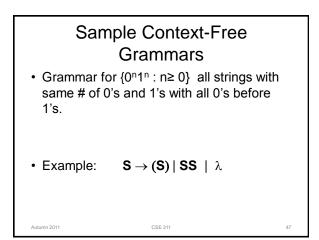
Recursive definitions of functions

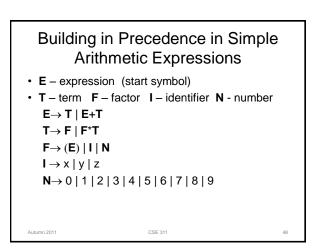

- F(0) = 0; F(n + 1) = F(n) + 1;
- G(0) = 1; $G(n + 1) = 2 \times G(n)$;
- 0! = 1; (n+1)! = (n+1) × n!
- $f_0 = 0; f_1 = 1; f_n = f_{n-1} + f_{n-2}$




Function definitions on recursively defined sets


 $\begin{array}{l} \mbox{Concat}(w,\,\lambda)=w\mbox{ for }w\in\Sigma^*\\ \mbox{Concat}(w_1,w_2x)=\mbox{Concat}(w_1,w_2)x\mbox{ for }w_1,\,w_2\mbox{ in }\Sigma^*,\,x\in\Sigma \end{array}$


Prove: Len(Concat(x,y))=Len(x)+Len(y) for all strings x and y



BNF for C	Definition of Relations
<pre>statement: (lidentifier "case" constant-expression "default") ":")* (expression ">" 'if" "(" expression ")" statement "if" "(" expression ")" statement "if" "(" expression ")" statement "suich" "(" expression ")" statement </pre>	Let A and B be sets, A binary relation from A to B is a subset of $A \times B$
"while" "(" expression ")" statement "do" statement "while" (" expression ")" ;" "for" "(" expression? "," expression? ")" statement "contine" ;" ;" "breakt ";" "roturn" expression ";"	Let A be a set, A binary relation on A is a subset of $A \times A$
) block: "(" declaration* statement* ")"	Let R be a relation on A
expression: assignment-expression%	R is reflexive iff (a,a) \in R for every a \in A
assignment-empression: (unary-empression: ("==" ===" = ==" "/=" "+=" "+=" "-=" "<<=" ">>=" "g=" "== ==="	R is symmetric iff (a,b) ∈ R implies (b, a)∈ R
) * conditional-expression	R is antisymmetric iff (a,b) \in R and a \neq b implies (b,a) \in R
<pre>conditional=expression:</pre>	R is transitive iff (a,b) \in R and (b, c) \in R implies (a, c) \in R

Combining Relations

Let R be a relation from A to B Let S be a relation from B to C The composite of R and S, $\,$ S $^{\circ}$ R is the relation from A to C defined

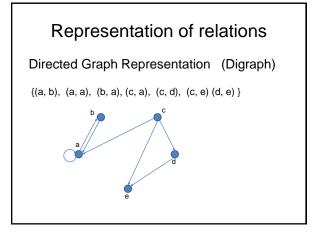
S \circ R = {(a, c) | \exists b such that (a,b) \in R and (b,c) \in S}

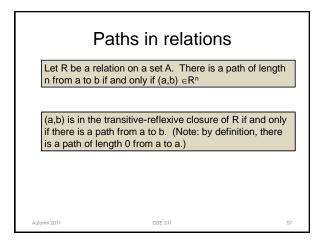
Relations

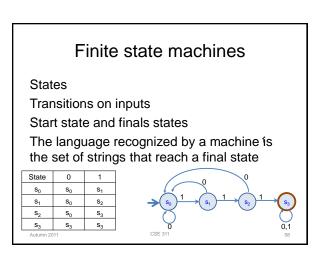
(a,b)∈ Parent: b is a parent of a (a,b)∈ Sister: b is a sister of a Aunt = Sister ° Parent Grandparent = Parent ° Parent

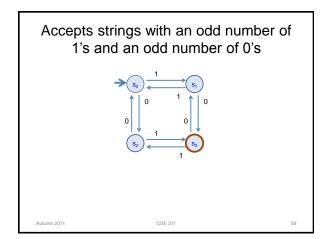
 R^2 = R $^\circ$ R = {(a, c) | \exists b such that (a,b) \in R and (b,c) \in R}

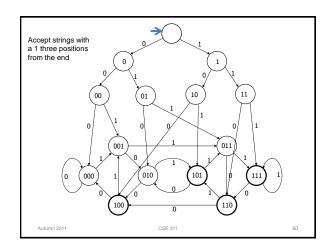
 $R^0 = \{(a,a) \mid a \, \in \, A\}$ $R^1 = R$ $R^{n+1} = R^n \circ R$

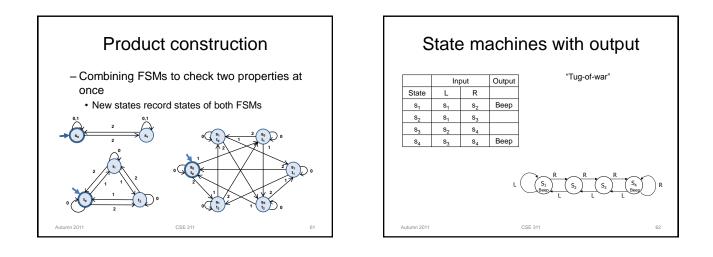

 $S \circ R = \{(a, c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S\}$

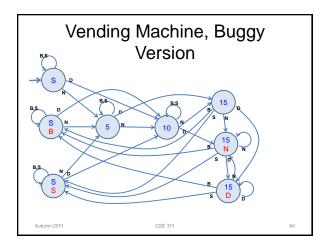


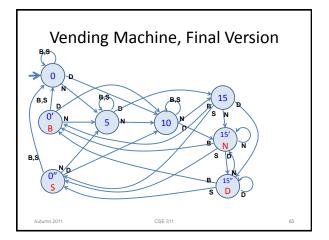

	n-ary relations Let $A_1, A_2,, A_n$ be sets. An n-ary relation on										
these sets is a subset of $A_1 \times A_2 \times \ldots \times A_n$.											
Name	GPA		Student_ID	Major							
Knuth	4.00		328012098	CS							
Von Neuman	3.78		CS								
Russell	3.85		481080220	Mathematics							
Einstein	2.11		238082388	Philosophy							
Newton	3.61		238001920	Physics							
48882811 Karp 3.98			1727017	Mathematics							
Bernoulli	3.21		348882811	CS							
Bernoulli	3.54		1727017	Physics							
			2921938	Mathematics							
			2921939	Mathematics							
	Name Knuth Von Neuman Russell Einstein Newton Karp Bernoulli	Name GPA Knuth 4.00 Von Neuman 3.78 Russell 3.85 Einstein 2.11 Newton 3.61 Karp 3.98 Bernoulli 3.21	Name GPA Knuth 4.00 Von Neuman 3.78 Russell 3.85 Einstein 2.11 Newton 3.61 Karp 3.98 Bernoulli 3.21	Knuth 4.00 328012098 Von Neuman 3.78 481080220 Russell 3.85 481080220 Einstein 2.11 238082388 Newton 3.61 238001920 Karp 3.98 1727017 Bernoulli 3.54 1727017 2921938 1727018							

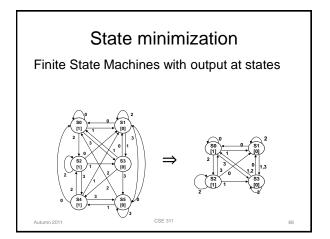

$\begin{array}{l} \mbox{Matrix representation for}\\ \mbox{relations}\\ \mbox{Relation R on A=}\{a_1, \dots a_p\}\\ \mbox{$m_{ij}= \left\{ \begin{array}{ll} 1 \mbox{ if } (a_i, a_j) \in R,\\ 0 \mbox{ if } (a_i, a_j) \notin R. \end{array} \right.} \end{array}$

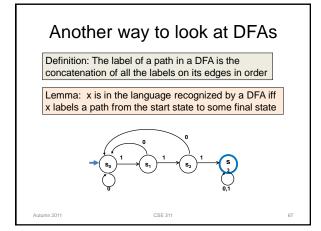

 $\{(1,\,1),\,(1,\,2),\,\,(1,\,4),\,\,(2,1),\,\,(2,3),\,(3,2),\,(3,\,3)\,\,(4,2)\,\,(4,3)\}$

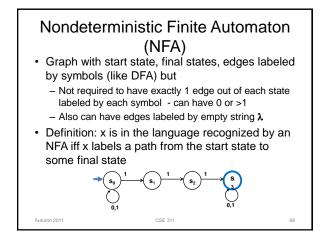


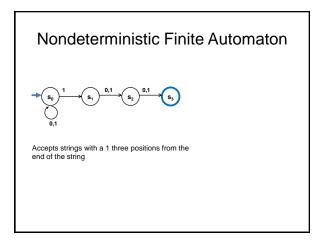


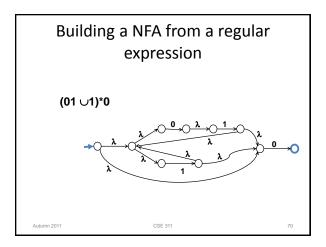


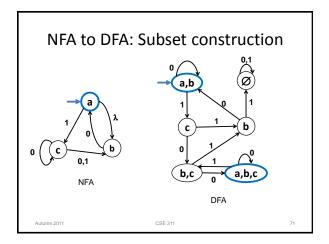


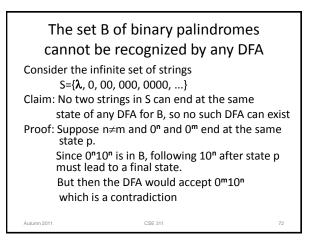


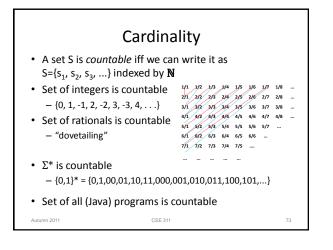


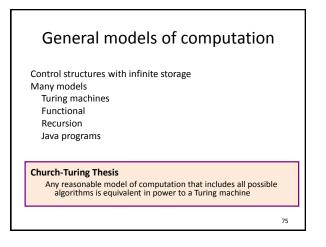


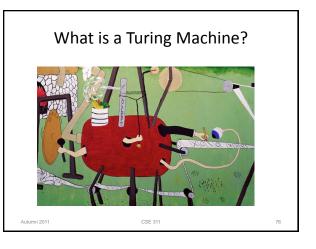


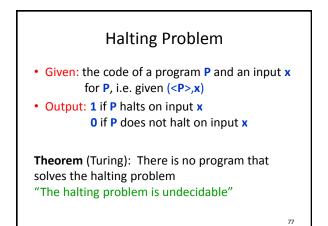


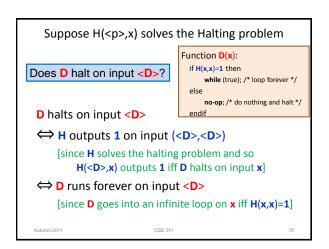


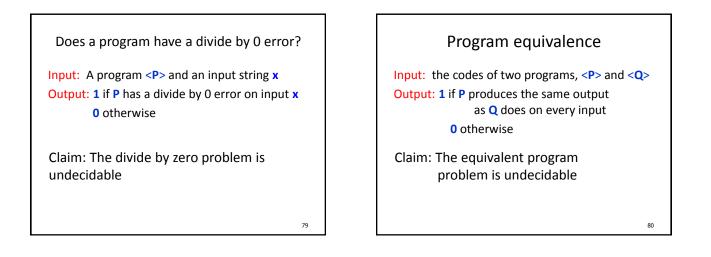











The real numbers are not countable • "diagonalization"												
	~	0	1	2	3	4	5		7	8	9	
r ₁	0). U.	5	0				0		0		
r ₂	0).		3 ⁵	3	3		3		3		
r ₃	0).	1	4	2 ⁵		5	7	1	4		
r ₄	0).	1	4	1	5 ¹	9	2	6	5		
r _s	0).	1	2	1	2	25	1	2	2		
r _e	0).	2	5	0	0	0	0 ⁵	0	0		
r ₇	0).	7	1	8	2	8	1	8 ⁵	2		
rs	0).	6	1	8	0	3	3	9	4 5		
											•••	
Autumn 2011		CSE	311								74	

