CSE 311 Foundations of Computing I

Autumn 2011

Lecture 29
Course Summary

Announcements

- Review sessions
- Saturday, Dec 10, 4 pm, EEB 037 (Anderson)
- Sunday, Dec 11, 4 pm, EEB 037 (Beame)
- Answer Catalyst Survey about which time you will take the final exam (by Sunday).
- Review session Saturday/Sunday
- List of Final Exam Topics and sampling of some typical kinds of exam questions on the web
- Final exam
- Monday, Dec 12, 2:30-4:20 pm, Gug 220
- Monday, Dec 12, 4:30-6:20 pm, Gug 220

Autumn 2011
CSE 311

Propositional Logic

- Statements with truth values
- The Washington State flag is red
- It snowed in Whistler, BC on January 4, 2011.
- Rick Perry won the lowa straw poll
- Space aliens landed in Roswell, New Mexico
- If n is an integer greater than two, then the equation $a^{n}+b^{n}=c^{n}$ has no solutions in non-zero integers a, b, and c.
- Propositional variables: p, q, r, s, \ldots
- Truth values: \mathbf{T} for true, \mathbf{F} for false
- Compound propositions

Negation (not)	$\neg p$
Conjunction (and)	$p \wedge q$
Disjunction (or)	$p \vee q$
Exclusive or	$p \oplus q$
Implication	$p \rightarrow q$
Biconditional	$p \leftrightarrow q$

Logical equivalence

- Terminology: A compound proposition is a
- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false
$p \vee \neg p$
$p \oplus p$
$(p \rightarrow q) \wedge p$
$(p \wedge q) \vee(p \wedge \neg q) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q)$

Logical Equivalence

- p and q are logically equivalent iff
$p \leftrightarrow q$ is a tautology
- The notation $p \equiv q$ denotes p and q are logically equivalent
- De Morgan's Laws:

$$
\begin{aligned}
& \neg(p \wedge q) \equiv \neg p \vee \neg q \\
& \neg(p \vee q) \equiv \neg p \wedge \neg q
\end{aligned}
$$

Digital Circuits

- Computing with logic
- T corresponds to 1 or "high" voltage
- F corresponds to 0 or "low" voltage
- Gates
- Take inputs and produce outputs
- Functions
- Several kinds of gates
- Correspond to propositional connectives
- Only symmetric ones (order of inputs irrelevant)

Combinational Logic Circuits

Wires can send one value to multiple gates

A quick combinational logic example

- Calendar subsystem: number of days in a month (to control watch display)
- used in controlling the display of a wrist-watch LCD screen
- inputs: month, leap year flag
- outputs: number of days

Combinational example (cont'd)

- Truth-table to logic to switches to gates
$-\mathrm{d} 28=$ " 1 when month=0010 and leap=0"
- d28 = m8'•m4'•m2•m1'•leap'
- d31 = "1 when month=0001 or month=0011 or \ldots month=1100"
- d31 $=\left(m 8^{\prime} \cdot m 4^{\prime} \cdot m 2^{\prime} \cdot m 1\right)+\left(m 8^{\prime} \cdot m 4^{\prime} \cdot m 2 \cdot m 1\right)+\ldots$ ($\mathrm{m} 8 \cdot \mathrm{~m} 4 \cdot \mathrm{~m}^{\prime} \cdot \mathrm{m} 1^{\prime}$)
- d31 = can we simplify more? \quad| month | leap | d28 d29 d30 d31 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0000 | - | - | - | - |

month							leap	d28				d29	d30	d31
0000	-	-	-	-	-									
0001	-	0	0	0	1									
0010	0	1	0	0	0									
0010	1	0	1	0	0									
0011	-	0	0	0	1									
0100	-	0	0	1	0									
$\ldots 7$														
1100	-	0	0	0	1									
1101	-	-	-	-	-									
$111-$	-	-	-	-	-									

Combinational example (cont'd)

```
d28 = m8'•m4'•m2 -m1'•leap'
\(\mathrm{d} 29=\mathrm{m} 8^{\prime} \cdot \mathrm{m} 4^{\prime} \cdot \mathrm{m} 2 \cdot \mathrm{~m} 1^{\prime} \cdot\) leap
d30 \(=\left(m 8^{\prime} \cdot \mathrm{m} 4 \cdot \mathrm{~m} 2^{\prime} \cdot \mathrm{m} 1^{\prime}\right)+\left(\mathrm{m} 8^{\prime} \cdot \mathrm{m} 4 \cdot \mathrm{~m} 2 \cdot \mathrm{~m} 1^{\prime}\right)+\)
\(\left(m 8 \cdot m 4^{\prime} \cdot m 2^{\prime} \cdot m 1\right)+\left(m 8 \cdot m 4^{\prime} \cdot m 2 \cdot m 1\right)\)
\(=\left(m 8^{\prime} \cdot m 4 \cdot m 1^{\prime}\right)+\left(m 8 \cdot m 4^{\prime} \cdot m 1\right)\)
\(\mathrm{d} 31=\left(m 8^{\prime} \cdot m 4^{\prime} \cdot m 2^{\prime} \cdot m 1\right)+\left(m 8^{\prime} \cdot m 4^{\prime} \cdot m 2 \cdot m 1\right)+\) \(\left(m 8^{\prime} \cdot m 4 \cdot \mathrm{~m}^{\prime} \cdot \mathrm{m} 1\right)+\left(m 8^{\prime} \cdot m 4 \cdot \mathrm{~m} 2 \cdot \mathrm{~m} 1\right)+\) \(\left(m 8 \cdot m 4 ' \cdot m 2^{\prime} \cdot m 1\right.\) ' \()+\left(m 8 \cdot m 4{ }^{\prime} \cdot m 2 \cdot m 1^{\prime}\right)+\) (m8•m4•m2'•m1')
```


Boolean algebra

- An algebraic structure consists of - a set of elements B
- binary operations $\{+, \bullet\}$
- and a unary operation \{'\}
- such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure:
3. associativity:

$$
\begin{aligned}
& a \cdot b \text { is in } B \\
& a \cdot b=b \cdot a
\end{aligned}
$$

$$
a \cdot b=b \cdot a
$$

4. associativity:
5. identity:

$$
a+b \text { is in } B
$$

$$
\begin{aligned}
& a+b \text { is in } B \\
& a+b=b+a
\end{aligned}
$$

$$
a+(b+c)=(a+b)+c
$$

7. complementarity:
$a \cdot(b \cdot c)=(a \cdot b) \cdot c$

$$
a+0=a
$$

$$
\begin{aligned}
& a+(b \cdot c)=(a+b) \cdot(a+c) \\
& a+a^{\prime}=1
\end{aligned}
$$

$a \cdot 1=a$
$a \cdot(b+c)$
$a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
$a \cdot a^{\prime}=0$

Sum-of-products canonical forms

- Also known as disjunctive normal form
- Also known as minterm expansion

Predicate Calculus

- Predicate or Propositional Function
- A function that returns a truth value
- " x is a cat"
- "student x has taken course y "
- " $x>y$ "
- $\forall x P(x): P(x)$ is true for every x in the domain
- $\exists x P(x)$: There is an x in the domain for which $P(x)$ is true

Statements with quantifiers

- $\forall x(\operatorname{Even}(x) \vee \operatorname{Odd}(x))$
- $\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$ Positive Integers

Even (x) $\operatorname{Odd}(x)$ Prime (x) $\operatorname{Greater}(x, y)$ Equal (x, y)

- $\forall x \exists y(\operatorname{Greater}(y, x) \wedge \operatorname{Prime}(y))$
- $\forall x(\operatorname{Prime}(x) \rightarrow(\operatorname{Equal}(x, 2) \vee \operatorname{Odd}(x))$
- $\exists x \exists y($ Equal $(x, y+2) \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y))$

Simple Propositional Inference Rules

- Excluded middle

$$
\therefore p \vee \neg p
$$

- Two inference rules per binary connective one to eliminate it, one to introduce it.

$\frac{p \wedge q}{\therefore p, q}$	$\frac{p, q}{}$
$\frac{p \vee q, \neg p}{\therefore q}$	$\frac{p}{p p \vee q, q \vee p}$
$\frac{p, p \rightarrow q}{}$	$\frac{p \rightarrow q}{\therefore p \rightarrow q}$

Autumn 201
CSE 3 21

Proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

Inference Rules for Quantifiers

$P(c)$ for some c
$\therefore \exists \mathrm{xP}(\mathrm{x})$
$\forall \mathrm{xP}(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{a})$ for any a
"Let a be anything"...P(a)
$\therefore \forall \mathrm{xP}(\mathrm{x})$
\qquad
$\therefore \mathrm{P}(\mathrm{c})$ for some special c

Even $(x) \equiv \exists y \quad(x=2 y)$ $\operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1)$ Domain: Integers

- Prove: "The square of every odd number is odd" English proof of: $\forall x\left(\operatorname{Odd}(\mathrm{x}) \rightarrow \operatorname{Odd}\left(\mathrm{x}^{2}\right)\right)$

Let x be an odd number.
Then $x=2 k+1$ for some integer k (depending on x) Therefore $x^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$. Since $2 k^{2}+2 k$ is an integer, x^{2} is odd.

Characteristic vectors

- Let $U=\{1, \ldots, 10\}$, represent the set \{1,3,4,8,9\} with

$$
1011000110
$$

- Bit operations:
$-0110110100 \vee 0011010110=0111110110$
- ls -l
drwxr-xr-x ... Documents/
-rw-r--r-- ... file1
-rw-r--r-- ... file1

Autumn 2011
CSE 311

One-time pad

- Alice and Bob privately share random n-bit vector K - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
- Alice computes $\mathrm{C}=\mathrm{m} \oplus \mathrm{K}$
- Alice sends C to Bob
- Bob computes $m=C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess

Autumn 2011
CSE 311
25

Division Theorem

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \leq r<d$, such that $a=d q+r$.

$$
q=a \operatorname{div} d \quad r=a \bmod d
$$

Integer representation

Signed integer representation

Suppose $-2^{n-1}<x<2^{n-1}$
First bit as the sign, $n-1$ bits for the value

$$
\text { 99: } 0110 \text { 0011, } \quad-18: 10010010
$$

Two's complement representation
Suppose $0 \leq x<2^{n-1}$,
x is represented by the binary representation of x
$-x$ is represented by the binary representation of 2^{n-x}

99: 0110 0011,
-18: 11101110
CSE 311 ${ }_{2} 9$

Arithmetic mod 7

- $\mathrm{a}+{ }_{7} \mathrm{~b}=(\mathrm{a}+\mathrm{b}) \bmod 7$
- $a \times_{7} b=(a \times b) \bmod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

Let a and b be integers, and m be a positive integer. We say a is congruent to b modulo m if m divides $\mathrm{a}-\mathrm{b}$. We use the notation $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ to indicate that a is congruent to b modulo m .

Let a and b be integers, and let m be a positive integer. Then $a \equiv b(\bmod m)$ if and only if a mod $m=b \bmod m$.

Let m be a positive integer. If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ and $c \equiv d(\bmod m)$, then
$a+c \equiv b+d(\bmod m) \quad$ and
$\mathrm{ac} \equiv \mathrm{bd}(\bmod \mathrm{m})$
Let a and b be integers, and let m be a positive integer.
Then $a \equiv b(\bmod m)$ if and only if
a mod $m=b \bmod m$.

Modular Exponentiation

x	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

a	a^{1}	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1

Arithmetic mod 7

Primality

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called composite.

Fundamental Theorem of Arithmetic: Every positive integer greater than 1 has a unique prime factorization

GCD, LCM and Factoring

$a=2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11=46,200$
$\mathrm{b}=2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13=204,750$
$\operatorname{GCD}(\mathrm{a}, \mathrm{b})=2^{\min (3,1)} \cdot 3^{\min (1,2)} \cdot 5^{\min (2,3)} \cdot 7^{\min (1,1)}$
$\cdot 11^{\min (1,0)} \cdot 13^{\min (0,1)}$
$\operatorname{LCM}(\mathrm{a}, \mathrm{b})=2^{\max (3,1)} \cdot 3^{\max (1,2)} \cdot 5^{\max (2,3)} \cdot 7^{\max (1,1)}$

- $11^{\max (1,0)} \cdot 13^{\max (0,1)}$

Autumn 2011
CSE 311

Euclid's Algorithm

- $\operatorname{GCD}(\mathrm{x}, \mathrm{y})=\operatorname{GCD}(\mathrm{y}, \mathrm{x} \bmod \mathrm{y})$
int GCD(int a , int b$)\left\{\quad /^{*} \mathrm{a}>=\mathrm{b}, \quad \mathrm{b}>0\right.$ *
int tmp
int $\mathrm{x}=\mathrm{a}$;
int $y=b$;
while $(y>0)\{$
tmp $=x \% y$,
$x=y$;
$y=$ tmp;
return x ;
\}

Multiplicative Inverse mod m
Suppose GCD(a, m) = 1

By Bézoit's Theorem, there exist integers s and t such that $\mathrm{sa}+\mathrm{tm}=1$.
s is the multiplicative inverse of a :

$$
1=(\mathrm{sa}+\mathrm{tm}) \bmod \mathrm{m}=\mathrm{sa} \bmod \mathrm{~m}
$$

Strong Induction

$\mathrm{P}(0)$
$\forall k((P(0) \wedge P(1) \wedge P(2) \wedge \ldots \wedge P(k)) \rightarrow P(k+1))$
$\therefore \forall \mathrm{nP}(\mathrm{n})$

Recursive definitions of functions

- $F(0)=0 ; F(n+1)=F(n)+1 ;$
- $G(0)=1 ; G(n+1)=2 \times G(n) ;$
- $0!=1 ;(n+1)!=(n+1) \times n!$
- $f_{0}=0 ; f_{1}=1 ; f_{n}=f_{n-1}+f_{n-2}$

Strings

- The set Σ^{*} of strings over the alphabet Σ is defined
- Basis: $\lambda \in S$ (λ is the empty string)
- Recursive: if $w \in \Sigma^{\star}, x \in \Sigma$, then $w x \in \Sigma^{*}$
- Palindromes: strings that are the same backwards and forwards.
- Basis: λ is a palindrome and any $a \in \Sigma$ is a palindrome
- If p is a palindrome then apa is a palindrome for every a $\in \Sigma$

Function definitions on recursively defined sets

$\operatorname{Len}(\lambda)=0 ;$
$\operatorname{Len}(w x)=1+\operatorname{Len}(w) ;$ for $w \in \Sigma^{*}, x \in \Sigma$

Concat $(w, \lambda)=w$ for $w \in \Sigma^{*}$
Concat $\left(w_{1}, w_{2} x\right)=\operatorname{Concat}\left(w_{1}, w_{2}\right) x$ for w_{1}, w_{2} in $\Sigma^{*}, x \in \Sigma$

Prove:
Len(Concat $(x, y))=\operatorname{Len}(x)+\operatorname{Len}(y)$ for all strings x and y

Rooted Binary trees

- Basis: - is a rooted binary tree
- Recursive Step:
 binary trees then so is:

Functions defined on rooted binary trees

- $\operatorname{size}(\bullet)=1$
- $\operatorname{size}(\overbrace{2})=1+\operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right)$
- height $(\bullet)=0$
- height $(\widehat{)})=1+\max \left\{\right.$ height $\left(T_{1}\right)$,height $\left.\left(T_{2}\right)\right\}$ Tint

Prove:
For every rooted binary tree $T, \operatorname{size}(T) \leq 2^{\text {height }(T)+1}-1$

Regular Expressions

- 0^{*}
- 0 ***
- $(0 \cup 1)^{*}$
- $\left(0^{*} 1^{*}\right)^{*}$
- $(0 \cup 1)^{*} 0110(0 \cup 1)^{*}$
- $(0 \cup 1)^{*}(0110 \cup 100)(0 \cup 1)^{*}$

Sample Context-Free Grammars

- Grammar for $\left\{0^{n 1 n}: n \geq 0\right\}$ all strings with same \# of 0's and 1's with all 0's before 1's.
- Example: $\quad \mathbf{S} \rightarrow \mathbf{(S)}|\mathbf{S S}| \lambda$

Regular Expressions over Σ

- Each is a "pattern" that specifies a set of strings
- Basis:
$-\varnothing, \lambda$ are regular expressions
- \boldsymbol{a} is a regular expression for any $\boldsymbol{a} \in \Sigma$
- Recursive step:
- If \mathbf{A} and \mathbf{B} are regular expressions then so are:
- $(A \cup B)$
- (AB)
- A^{\star}

Autumn 2011

Context-Free Grammars

- Example: $\quad \mathbf{S} \rightarrow \mathbf{0 S} \mathbf{0}|\mathbf{S} 1| 0|1| \lambda$
- Example: $\quad \mathbf{S} \rightarrow 0 \mathbf{S}|\mathbf{S} 1| \lambda$

Building in Precedence in Simple Arithmetic Expressions

- E - expression (start symbol)
- T-term \mathbf{F} - factor \mathbf{I}-identifier \mathbf{N} - number
$E \rightarrow T \mid E+T$
$\mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F}^{\star} \mathbf{T}$
$F \rightarrow(E)|I| N$
$I \rightarrow x|y| z$
$\mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

BNF for C

statement:
(idontif

if" "(" expression ")" statement
"whtch" "(" expression ")" " statement
"while" " (" expression ")" statement
do" statement "while" "
"

"goto" identifier
continue" $"=1$
"continue","
"return" expression? ";"
block: " $\{$ " declaration* statement*
expression:
xpression
assignme
assignment-expression.
unary-expression
und

1*'conditional-expression
onditional-expression
logical-OR-expression ("2" expression ":" conditional-expression 12

Definition of Relations

Let A and B be sets,

A binary relation from A to B is a subset of $A \times B$
Let A be a set,
A binary relation on A is a subset of $A \times A$
Let R be a relation on A
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \in R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Combining Relations

Let R be a relation from A to B
Let S be a relation from B to C
The composite of R and $S, S^{\circ} R$ is the relation from A to C defined
$S^{\circ} R=\{(a, c) \mid \exists b$ such that $(a, b) \in R$ and $(b, c) \in S\}$

Relations

$(a, b) \in$ Parent: b is a parent of a
$(a, b) \in$ Sister: b is a sister of a
Aunt $=$ Sister ${ }^{\circ}$ Parent
Grandparent $=$ Parent ${ }^{\circ}$ Parent
$R^{2}=R^{\circ} R=\{(a, c) \mid \exists b$ such that $(a, b) \in R$ and $(b, c) \in R\}$
$R^{0}=\{(a, a) \mid a \in A\}$
$R^{1}=R$
$R^{n+1}=R^{n}{ }^{\circ} R$
$S^{\circ} R=\{(a, c) \mid \exists b$ such that $(a, b) \in R$ and $(b, c) \in S\}$

n-ary relations				
Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets. An n-ary relation on these sets is a subset of $A_{1} \times A_{2} \times \ldots \times A_{n}$.				
Student_ID	Name	GPA	Student_ID	Major
328012098	Knuth	4.00	328012098	CS
481080220	Von Neuman	3.78	481080220	CS
238082388	Russell	3.85	481080220	Mathematics
238001920	Einstein	2.11	238082388	Philosophy
1727017	Newton	3.61	238001920	Physics
348882811	Karp	3.98	1727017	Mathematics
2921938	Bernoulli	3.21	348882811	CS
2921939	Bernoulli	3.54	1727017	Physics
			2921938	Mathematics
			2921939	Mathematics

Matrix representation for relations

Relation R on $A=\left\{a_{1}, \ldots a_{p}\right\}$
$m_{i j}=\left\{\begin{array}{l}1 \text { if }\left(a_{i}, a_{j}\right) \in R, \\ 0 \text { if }\left(a_{i}, a_{j}\right) \notin R .\end{array}\right.$
$\{(1,1),(1,2),(1,4),(2,1),(2,3),(3,2),(3,3)(4,2)(4,3)\}$

Paths in relations

Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a, b) \in R^{n}$
(a, b) is in the transitive-reflexive closure of R if and only if there is a path from a to b. (Note: by definition, there is a path of length 0 from a to a.)

Representation of relations

Directed Graph Representation (Digraph)

$\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}$

Finite state machines

States

Transitions on inputs
Start state and finals states
The language recognized by a machine is the set of strings that reach a final state

State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

State machines with output

	Input		Output
State	L	R	
s_{1}	$\mathrm{~s}_{1}$	$\mathrm{~s}_{2}$	Beep
s_{2}	$\mathrm{~s}_{1}$	$\mathrm{~s}_{3}$	
$\mathrm{~s}_{3}$	$\mathrm{~s}_{2}$	$\mathrm{~s}_{4}$	
$\mathrm{~s}_{4}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{4}$	Beep

"Tug-of-war"

Press S or B for a candy bar

State minimization

Finite State Machines with output at states

Another way to look at DFAs

Definition: The label of a path in a DFA is the concatenation of all the labels on its edges in order

Lemma: x is in the language recognized by a DFA iff x labels a path from the start state to some final state

CSE 311

Nondeterministic Finite Automaton (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol - can have 0 or >1
- Also can have edges labeled by empty string λ
- Definition: x is in the language recognized by an NFA iff x labels a path from the start state to some final state

Autumn 2011
CSE 311 68
Nondeterministic Finite Automaton

Accepts strings with a 1 three positions from the end of the string

Building a NFA from a regular expression
(01 〕1)*0

The set B of binary palindromes cannot be recognized by any DFA
Consider the infinite set of strings
$S=\{\lambda, 0,00,000,0000, \ldots\}$
Claim: No two strings in S can end at the same state of any DFA for B, so no such DFA can exist
Proof: Suppose $n \neq m$ and 0^{n} and 0^{m} end at the same state p .
Since $0^{n} 10^{n}$ is in B, following 10^{n} after state p must lead to a final state.
But then the DFA would accept $0^{m} 10^{n}$
which is a contradiction

Autumn 2011
CSE 311

Cardinality

- A set S is countable iff we can write it as $S=\left\{s_{1}, S_{2}, S_{3}, \ldots\right\}$ indexed by \mathbb{N}
- Set of integers is countable $-\{0,1,-1,2,-2,3,-3,4, \ldots\}$
- Set of rationals is countable
- "dovetailing" $\begin{array}{lllllllll}1 / 1 & 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 & 1 / 7 & 1 / 8 & \ldots \\ 2 / 1 & 2 / 2 & 2 / 3 & 2 / 4 & 2 / 5 & 2 / 6 & 2 / 7 & 2 / 8 & \ldots \\ 3 / 1 & 3 / 2 & 3 / 3 & 3 / 4 & 3 / 5 & 3 / 6 & 3 / 7 & 3 / 8 & \ldots \\ 4 / 1 & 4 / 2 & 4 / 3 & 4 / 4 & 4 / 5 & 4 / 6 & 4 / 7 & 4 / 8 & \ldots \\ 5 / 1 & 5 / 2 & 5 / 3 & 5 / 4 & 5 / 5 & 5 / 6 & 5 / 7 & \ldots & \\ 6 / 1 & 6 / 2 & 6 / 3 & 6 / 4 & 6 / 5 & 6 / 6 & \ldots & & \\ 7 / 1 & 7 / 2 & 7 / 3 & 7 / 4 & 7 / 5 & \ldots . & & & \end{array}$
- Σ^{*} is countable

$$
-\{0,1\}^{*}=\{0,1,00,01,10,11,000,001,010,011,100,101, \ldots\}
$$

- Set of all (Java) programs is countable

General models of computation

Control structures with infinite storage
Many models
Turing machines
Functional
Recursion
Java programs

Church-Turing Thesis

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

Halting Problem

- Given: the code of a program \mathbf{P} and an input \mathbf{x} for \mathbf{P}, i.e. given ($\langle\mathbf{P}\rangle, \mathbf{x}$)
- Output: 1 if \mathbf{P} halts on input \mathbf{x} $\mathbf{0}$ if \mathbf{P} does not halt on input \mathbf{x}

Theorem (Turing): There is no program that solves the halting problem "The halting problem is undecidable"

The real numbers are not countable

- "diagonalization"

Does a program have a divide by 0 error?

Input: A program < $\mathbf{P}>$ and an input string \mathbf{x} Output: 1 if \mathbf{P} has a divide by 0 error on input \mathbf{x} 0 otherwise

Claim: The divide by zero problem is undecidable

Program equivalence

Input: the codes of two programs, <P> and <Q>
Output: 1 if \mathbf{P} produces the same output as \mathbf{Q} does on every input
0 otherwise
Claim: The equivalent program problem is undecidable

That's all folks!

Autumn 2011
CSE 311 ${ }^{81}$

Teaching evaluation

- Please answer the questions on both sides of the form. This includes the ABET questions on the back

