
CSE 311 Foundations of

Computing I

Lecture 28

Computability: Other Undecidable
Problems

Autumn 2011

Autumn 2011 CSE 311 1

Announcements

• Reading

– 7th edition: p. 201

– 6th edition: p 177

– 5th edition: p. ?

• Answer Catalyst Survey about which time you

will take the final exam (by Sunday).

– Review session Saturday/Sunday

– List of Final Exam Topics and sampling of some

typical kinds of exam questions on the web

Autumn 2011 CSE 311 2

Last lecture highlights

• Turing machine definition

– Intuitive justification, Church-Turing Thesis

• Programs ≡ Turing machines

– Distinction between the executing program P and

its code <P>

• Program Interpreter U (Universal TM)

– Takes as input: (<P>,x) where <P> is the code of a

program and x is an input string

– Simulates P on input x

Autumn 2011 CSE 311 3

Last lecture highlights

• Halting Problem
– Input: the code of a program P and an input x for P, i.e.

given (<P>,x)

– Output: 1 if P halts on input x
0 if P does not halt on input x

• Theorem (Turing): There is no program that solves
the halting problem. It is “undecidable”

• Proof idea: “diagonalization”
– Table of the Halting Problem answers

– Each row is a fingerprint of its program

– If there is a program H for the Halting problem then we
can create a new program D that can’t be in any row

Autumn 2011 CSE 311 4

5

λ 0 1 00 01 10 11 000 001 010 011

input x

λ

0

1
00
01

10
11
000

001
.
.

0 1 1 0 1 1 1 0 0 0 1
1 1 0 1 0 1 1 0 1 1 1

1 0 1 0 0 0 0 0 0 0 1
0 1 1 0 1 0 1 1 0 1 0
0 1 1 1 1 1 1 0 0 0 1

1 1 0 0 0 1 1 0 1 1 1
1 0 1 1 0 0 0 0 0 0 1
0 1 1 1 1 0 1 1 0 1 0

.

.

(<P>,x) entry is 1 if program P halts on input x
and 0 if it runs forever

6

λ 0 1 00 01 10 11 000 001 010 011

input x

λ

0

1
00
01

10
11
000

001
.
.

1 1 1 0 1 1 1 0 0 0 1
1 0 0 1 0 1 1 0 1 1 1

1 0 0 0 0 0 0 0 0 0 1
0 1 1 1 1 0 1 1 0 1 0
0 1 1 1 0 1 1 0 0 0 1

1 1 0 0 0 0 1 0 1 1 1
1 0 1 1 0 0 1 0 0 0 1
0 1 1 1 1 0 1 0 0 1 0

.

.

Want to create a new program whose halting
properties are given by the flipped diagonal

Flipped Diagonal

7

Code for D assuming subroutine H that solves

the Halting Problem

• Function D(x):

– if H(x,x)=1 then

• while (true); /* loop forever */

– else

• no-op; /* do nothing and halt */

– endif

• D’s fingerprint is different from every row of the

table

– D can’t be a program so H cannot exist!

More on the proof

• The Halting Problem takes exactly the same

kind of input as the Universal machine U does.

– Though H can’t exist, we know that U does

• Why can’t we apply the same diagonalization

trick to a table of what U does?

– We’ll just write a 1 in the table if U halts rather

than write the output of U

Autumn 2011 CSE 311 8

9

λ 0 1 00 01 10 11 000 001 010 011

input x

λ

0

1
00
01

10
11
000

001
.
.

→→→→ 1 1 →→→→ 1 1 1 →→→→ →→→→ →→→→ 1
1 1 →→→→ 1 →→→→ 1 1 →→→→ 1 1 1

1 →→→→ 1 →→→→ →→→→ →→→→ →				→→				→→				→→				→ →→→→ →→→→ 1
→→→→ 1 1 →→→→ 1 →→→→ 1 1 →→→→ 1 →→→→
→→→→ 1 1 1 1 1 1 →→→→ →→→→ →→→→ 1

1 1 →→→→ →→→→ →→→→ 1 1 →→→→ 1 1 1
1 →→→→ 1 1 →→→→ →→→→ →→→→ →→→→ →→→→ →→→→ 1
→→→→ 1 1 1 1 →→→→ 1 1 →→→→ 1 →→→→

.

.

(<P>,x) entry is 1 if program P halts on input x
and →→→→ (runs forever) if it runs forever

U
→→→→ 1 1 →→→→ 1 1 1 →→→→ →→→→ →→→→ 1
1 1 →→→→ 1 →→→→ 1 1 →→→→ 1 1 1

1 →→→→ 1 →→→→ →→→→ →→→→ →				→→				→→				→→				→ →→→→ →→→→ 1
→→→→ 1 1 →→→→ 1 →→→→ 1 1 →→→→ 1 →→→→
→→→→ 1 1 1 1 1 1 →→→→ →→→→ →→→→ 1

1 1 →→→→ →→→→ →→→→ 1 1 →→→→ 1 1 1
1 →→→→ 1 1 →→→→ →→→→ →→→→ →→→→ →→→→ →→→→ 1
→→→→ 1 1 1 1 →→→→ 1 1 →→→→ 1 →→→→

.

.

10

λ 0 1 00 01 10 11 000 001 010 011

input x

λ

0

1
00
01

10
11
000

001
.
. (<P>,x) entry is 1 if program P halts on input x

and →→→→ (runs forever) if it runs forever

U

Using U instead of H in D to get D’
won’t flip the diagonal, it will
just make it all →→→→

Another view of the proof

• We can forget the table and just create the
code for D assuming that the code for H exists

Function D(x):

• if H(x,x)=1 then

– while (true); /* loop forever */

• else

– no-op; /* do nothing and halt */

• endif

• Then ask what does D do on input <D>?

– Does it halt?

Autumn 2011 CSE 311 11

D halts on input <D>

⇔ H outputs 1 on input (<D>,<D>)

[since H solves the halting problem and so

H(<D>,x) outputs 1 iff D halts on input x]

⇔D runs forever on input <D>

[since D goes into an infinite loop on x iff H(x,x)=1]

Autumn 2011 CSE 311 12

Function D(x):

• if H(x,x)=1 then

– while (true); /* loop forever */

• else

– no-op; /* do nothing and halt */

• endif

Does D halt on input <D>?

Another view of the proof

D halts on input <D>

⇔ H outputs 1 on input (<D>,<D>)

[since H solves the halting problem and so

H(<D>,x) outputs 1 iff D halts on input x]

⇔D runs forever on input <D>

[since D goes into an infinite loop on x iff H(x,x)=1]

Autumn 2011 CSE 311 13

Function D(x):

• if H(x,x)=1 then

– while (true); /* loop forever */

• else

– no-op; /* do nothing and halt */

• endif

Does D halt on input <D>?

Another view of the proof SCOOPING THE LOOP SNOOPER
A proof that the Halting Problem is undecidable

by Geoffrey K. Pullum (U. Edinburgh)

Autumn 2011 CSE 311 14

No general procedure for bug checks succeeds.

Now, I won’t just assert that, I’ll show where it leads:

I will prove that although you might work till you drop,

you cannot tell if computation will stop.

For imagine we have a procedure called P

that for specified input permits you to see

whether specified source code, with all of its faults,

defines a routine that eventually halts.

You feed in your program, with suitable data,

and P gets to work, and a little while later

(in finite compute time) correctly infers

whether infinite looping behavior occurs...

SCOOPING THE LOOP SNOOPER

Autumn 2011 CSE 311 15

...

Here’s the trick that I’ll use -- and it’s simple to do.

I’ll define a procedure, which I will call Q,

that will use P’s predictions of halting success

to stir up a terrible logical mess.

...

And this program called Q wouldn’t stay on the shelf;

I would ask it to forecast its run on itself.

When it reads its own source code, just what will it do?

What’s the looping behavior of Q run on Q?

...

Full poem at:

http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

16

Using undecidability of the halting

problem

• We have one problem that we know is

impossible to solve

– Halting problem

• Showing this took serious effort

• We’d like to use this fact to derive that other

problems are impossible to solve

– don’t want to go back to square one to do it

17

Another undecidable problem

The “always halts” problem
– Given: <Q>, the code of a program Q

– Output: 1 if Q halts on every input

0 if not.

Claim: the “always halts” problem is undecidable

Proof idea:
– Show we could solve the Halting Problem if we had a

solution for the “always halts” problem.

– No program solving for Halting Problem exists ⇒⇒⇒⇒ no
program solving the “always halts” problem exists

18

What we would like

• To solve the Halting Problem need to handle inputs
of the form (<P>,x)

• Our program will create a new program code <Q> so
that

– If P halts on input x

• then Q always halts

– If P runs forever on input x

• then Q runs forever on at least one input

• In fact, the <Q> we create will act the same on all
inputs

19

Creating <Q> from (<P>,x)

• Given (<P>,x) modify code of P to:

– Replace all input statements of P that read input

x, by assignment statements that ‘hard-code’ x in

P

• This creates a new program text <Q>

• It would be easy to write a program T that

changes (<P>,x) to <Q>

20

The transformation

int main(){

…

scanf(“%d”,&u);

…

scanf(“%d”,&v);

…

}

123 712

int main(){

…

u = 123;

…

v = 712;

…

}

(<P>,x) <Q>

21

Program to solve Halting Problem if “always

halts” were decidable

• Suppose “always halts” were solvable by

program A

• On input (<P>,x)

– execute the program T to transform (<P>,x) into

<Q> as on last slide

– call A with <Q> (the output of T) as its input and

use A’s output as the answer.

• This would do the job of H which we know

can’t exist so A can’t exist

Claim: Given (<P>,x) it is undecidable to

determine whether or not P tries to divide by 0

when run on input x

Autumn 2011 CSE 311 22

Claim: Given (<P>,x) it is undecidable to

determine whether or not P accesses an array

out of bounds when run on input x

Autumn 2011 CSE 311 23 24

The “yes” problem

– Given: <R>, the code of a program R

– Output: 1 if R outputs “yes” on every input

0 if not.

Claim: the “yes” problem is undecidable

25

Same kind of idea as “always halts”

• To solve the Halting Problem need to be able

to handle inputs of the form (<P>,x)

• We’ll create a new program code <R> so that

– If P halts on input x

• then R always outputs “yes”

– If P runs forever on input x

• then R does something else on at least one input.

26

Creating <R> from (<P>,x)

• Given (<P>,x) modify code of P to:

– Remove all output statements from P

– Replace all input statements of P that read input
x, by assignment statements that hard-code x in P

– Add a new last statement that prints “yes”

• This creates a new program text <R>

• It would be easy to write a program T that
changes (<P>,x) to <R>

27

Program to solve Halting Problem if the “yes”

problem were decidable

• Suppose the “yes” problem were solvable by

program Y

• On input (<P>,x)

– execute the code to transform (<P>,x) into <R> as

on last slide

– call Y with <R> (the output of T) as its input and

use Y’s output as the answer.

28

Equivalent program problem

• Input: the codes of two programs, <P> and <Q>

• Output: 1 if P produces the same output

as Q does on every input

0 otherwise

Claim: The equivalent program

problem is undecidable

Claim: The equivalent program

problem is undecidable

Autumn 2011 CSE 311 29 30

A general phenomenon: Can’t tell a book by its

cover

• Suppose you have a problem C that asks, given

program code <P>, to determine some property of

the input-output behavior of P, answering 1 if P has

the property and 0 if P doesn’t have the property.

Rice’s Theorem: If C’s answer isn’t always the same

then there is no program deciding C

31

Even harder problems

• Recall that with the halting problem, we could always

get at least one of the two answers correct

– if it halted we could always answer 1 (and this would cover

precisely all 1’s we need to do) but we can’t be sure about

answering 0

• There are natural problems where you can’t even do

that!

– The equivalent program problem is an example of this kind

of even harder problem.

32

Quick lessons

• Don’t rely on the idea of improved compilers
and programming languages to eliminate
major programming errors

– truly safe languages can’t possibly do general
computation

• Document your code!!!!

– there is no way you can expect someone else to
figure out what your program does with just your
codesince....in general it is provably impossible
to do this!

