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Announcements

* Reading
— 7th edition: p. 201 and 13.5
— 6th edition: p 177 and 12.5
— 5th edition: p. ? and 11.5
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Last lecture highlights

* Cardinality

* AsetSis countable iff we can write it as
S={s, S, S3, ...} indexed by N
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* Setof rationals is countable 7.+,
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— “dovetailing”
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* X*is countable I,
—{0,1}* = {0,1,00,01,10,11,000,001,010,011,100,101,...}

* Set of all (Java) programs is countable
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Last lecture highlights

* The set of real numbers is not countable
— “diagonalization”

12 3 4 5 & 7 8 9
2=0% s 0 0 0 0 0 0 o ..
nh 003 3°3 3 3 3 3 3
n oo 1 4 258 5 7 1 a
w0 1 4 1 slo 2 6 s
o001 2 1 2 251 2 2
K 0 2 5 0 0 0 030 o
, 0 7 1 8 2 8 1 85 2 .
, 0. 6 1 8 0 3 3 9 a5 .

— Why doesn’t this show that the rationals aren’t
countable?
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Last lecture highlights

* There exist functions that cannot be
computed by any program

— The set of all functions f: N—{0,1,...,9}
is not countable

—The set of all (Java/C/C++) programs is countable
— So there are simply more functions than programs
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Do we care?

* Are any of these functions, ones that we
would actually want to compute?

— The argument does not even give any example of
something that can’t be done, it just says that
such an example exists

* We haven’t used much of anything about
what computers (programs or people) can do

— Once we figure that out, we’ll be able to show
that some of these functions are really important
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Turing Machines

Church-Turing Thesis

Any reasonable model of computation that includes
all possible algorithms is equivalent in power to a
Turing machine

* Evidence
— Intuitive justification

— Huge numbers of equivalent models to TM'’s
based on radically different ideas

Components of Turing’s Intuitive
Model of Computers

Finite Control

— Brain/CPU that has only a finite # of possible “states of
mind”

¢ Recording medium

— An unlimited supply of blank “scratch paper” on which to
write & read symbols, each chosen from a finite set of
possibilities

— Input also supplied on the scratch paper

* Focus of attention

— Finite control can only focus on a small portion of the
recording medium at once

— Focus of attention can only shift a small amount at a time
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What is a Turing Machine?
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What is a Turing Machine?

* Recording Medium
— An infinite read/write “tape” marked off into cells
— Each cell can store one symbol or be “blank”

— Tape is initially all blank except a few cells of the tape containing
the input string

— Read/write head can scan one cell of the tape - starts on input
* In each step, a Turing Machine
— Reads the currently scanned symbol
— Based on state of mind and scanned symbol
« Overwrites symbol in scanned cell
* Moves read/write head left or right one cell
* Changes to a new state
* Each Turing Machine is specified by its finite set of rules

What is a Turing Machine?
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Turing Machine = Ideal Java/C Program

* |deal C/C++/Java programs

— Just like the C/C++/Java you're used to
programming with, except you never run out of
memory

 constructor methods always succeed
* malloc never fails
* Equivalent to Turing machines except a lot
easier to program !
— Turing machine definition is useful for breaking
computation down into simplest steps
— We only care about high level so we use programs
12




Turing’s idea: Machines as data

* Original Turing machine definition
— A different “machine” M for each task

— Each machine M is defined by a finite set of
possible operations on finite set of symbols

* M has a finite description as a sequence of
symbols, its “code”

* You already are used to this idea:
— We’'ll write <P> for the code of program P

—i.e. <P>is the program text as a sequence of ASCI|
symbols and P is what actually executes

Turing’s Idea: A Universal Turing
Machine

* A Turing machine interpreter U

— On input <P> and its input x, U outputs the same thing as P
does on input x

— At each step it decodes which operation P would have
performed and simulates it.

* One Turing machine is enough
— Basis for modern stored-program computer
* Von Neumann studied Turing’s UTM design
input output X — output
x—|P —P(x) <P>— —P(x)

Halting Problem

* Given: the code of a program P and an input x
for P, i.e. given (<P>,x)
* Qutput: 1if P halts on input x
0 if P does not halt on input x

Theorem (Turing): There is no program that
solves the halting problem
“The halting problem is undecidable”

Undecidability of the Halting Problem

* Suppose that there is a program H that
computes the answer to the Halting Problem
* We'll build a table with
— all the possible programs down one side
—all the possible inputs along the other side

¢ Then we'll use the supposed program H to build a

new program that can’t possibly be in the table!

input x
A 0100 01 10 11 000 001 010 011 ....
A 10110 1 11 0 0 0 1.
0O |(1t101 0 1 1 O 1 1 1.
A 1 1010 0 0 0 O 0 0 1.
Q,-OO o110 1 0 1 1 0 1 0 ..
801 o111 1 11 0 0 0 1.
810 1100 0 1 1 O 1 1 1.
E11 1011 0 0 0 O 0 0 1.
gOOOO 111 1 0 1 1 0 1 0 ..
o001 .
Q-.
(<P>,x) entry is 1 if program P halts on input x
and 0 if it runs forever
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A note on the table

* To make it easier to draw we’ve allowed every
string to be the code of some program

— We can just interpret each string that isn’t well-
formed to always halt whenever we try to run it.

* Alternatively, we could have only included
rows and columns that are codes for programs
— These are the only ones that matter anyway




Diagonal construction

« Consider a row corresponding to some program code
<P>
— the infinite sequence of 0’s and 1’s in that row of the table
is like a fingerprint of P
* Suppose a program H for the halting problem exists
— Then it could be used to figure out the value of any entry
in the table
— We'll use it to create a new program D that has a different
fingerprint from every row in the table
— But that’s impossible since there is a row for every
program ! Contradiction

input x

input x
A 0100 01 10 11 000 001 010 011 ....
A 0110 1 11 0 0 O 1.
o (1101 0 1 1 O 1 1 1.
A1 (1010 0 0O0 O O O 1.
aeo00 110 1 01 1 0 1 0.
%01 o111 1 1 1 0 0 O 1.
810 1100 0 1 1 O 1 1 1.
g1|1 011 0 0 0 0 O O 1.
g®o00j0 111 1 0 1 A1 0 1 0 ..
goo01 .
D.. .. . . . . . .
(<P>,x) entry is 1 if program P halts on input x
and 0 if it runs forever
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A 0100 01 10 11 000 001 010 011 ....

A 10110 1 1 1 0 0 0 1.

o (1101 0 1 1 O 1 1 1.
L 1010 0 0 0 O 0 0 1.
Q,-OO o110 1 0 1 1 0 1 0 ..
_801 o111 1 11 0 0 0 1.
810 1100 0 1 1 O 1 1 1.
c11|1 011 0 0 0 O 0 0 1.
®000/0 111 1 0 1 1 0 1 0 ..
8001/ .

Q-.
(<P>,x) entry is 1 if program P halts on input x
and 0 if it runs forever
20
input x Flipped Diagonal
A 010001 10 11 000 001 010 O11 ...

A (1 110 1 11 0 0 0 1.

o |(1too1 0o 1 1 O 1 1 1.
A1 (10000 OO O O O 1.
Q/-OO o111 1 0 1 1 0 1 0 ..
%01 0111 0 1 1 0 0 0 1.
810 1100 0 0 1 O 1 1 1.
g1t 011 0 0 1 O 0 0 1.
©o00/0 111 1 0 1 0 0 1 0 ..
g001 .

D..
Want to create a new program whose halting
properties are given by the flipped diagonal
22

Code for D assuming subroutine H that solves
the Halting Problem

¢ Function D(x):
—if H(x,x)=1 then
* while (true); /* loop forever */
—else
* no-op; /* do nothing and halt */
— endif

* D’s fingerprint is different from every row of the
table

— D can’t be a program so H cannot exist! 23

That’s it!

* We proved that there is no computer program
that can solve the Halting Problem.

* This tells us that there is no compiler that can
check our programs and guarantee to find any
infinite loops they might have
— The full story is even worse
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Using undecidability of the halting
problem
* We have one problem that we know is
impossible to solve
— Halting problem
* Showing this took serious effort

» We'd like to use this fact to derive that other
problems are impossible to solve
—don’t want to go back to square one to do it
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Another undecidable problem

The “always halts” problem
— Given: <Q>, the code of a program Q
— Output: 1 if Q halts on every input
0if not.

Claim: the “always halts” problem is undecidable
Proof idea:

— Show we could solve the Halting Problem if we had a
solution for the “always halts” problem.

— No program solving for Halting Problem exists —=> no
program solving the “always halts” problem exists
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What we would like

* To solve the Halting Problem need to handle inputs
of the form (<P>,x)
¢ Our program will create a new program code <Q> so
that
— If P halts on input x
* then Q always halts
— If P runs forever on input x
* then Qruns forever on at least one input

¢ In fact, the <Q> we create will act the same on all
inputs
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Creating <Q> from (<P>,x)

* Given (<P>,x) modify code of P to:

— Replace all input statements of P that read input
X, by assignment statements that ‘hard-code’ x in
2]

This creates a new program text <Q>

It would be easy to write a program T that
changes (<P>,x) to <Q>
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The transformation

int main(){ int main(){
.s”canf(”%d",&u); u= 123;
.s"canf(“%d",&v); v= 712;
123712

(<P>,x) <Q>
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Program to solve Halting Problem if “always
halts” were decidable

* Suppose “always halts” were solvable by

program A

* On input (<P>,x)

— execute the program T to transform (<P>,x) into
<Q> as on last slide

— call A with <Q> (the output of T) as its input and
use A’s output as the answer.

* This would do the job of H which we know

can’t exist so A can’t exist




