CSE 311 Foundations of
Computing |

Lecture 27
Computability: Turing machines,
Undecidability of the Halting Problem
Autumn 2011

Autumn 201 CSE 311

Announcements

* Reading
— 7th edition: p. 201 and 13.5
— 6th edition: p 177 and 12.5
— 5th edition: p. ? and 11.5

Autumn 201 CSE 311

Last lecture highlights

* Cardinality

* AsetSis countable iff we can write it as
S={s, S, S3, ...} indexed by N

)) 1 Mz s
* Setof rationals is countable 7.+,
iy 2'/

— “dovetailing”

‘ 5/5 56 /T ..
€1 %2, 7% §4 85 66 .
WA I T TE e

* X*is countable I,
—{0,1}* = {0,1,00,01,10,11,000,001,010,011,100,101,...}

* Set of all (Java) programs is countable

Autumn 201 CSE 311

ys uUs 17 18 ..
"4';»5" 3 1 s
Z W e a1 38

(s afs 47 4f8 ..

Last lecture highlights

* The set of real numbers is not countable
— “diagonalization”

12 3 4 5 & 7 8 9
2=0% s 0 0 0 0 0 0 o ..
nh 003 3°3 3 3 3 3 3
n oo 1 4 258 5 7 1 a
w0 1 4 1 slo 2 6 s
o001 2 1 2 251 2 2
K 0 2 5 0 0 0 030 o
, 0 7 1 8 2 8 1 85 2 .
, 0. 6 1 8 0 3 3 9 a5 .

— Why doesn’t this show that the rationals aren’t
countable?

Autumn 201 CSE 311

Last lecture highlights

* There exist functions that cannot be
computed by any program

— The set of all functions f: N—{0,1,...,9}
is not countable

—The set of all (Java/C/C++) programs is countable
— So there are simply more functions than programs

Autumn 201 CSE 311

Do we care?

* Are any of these functions, ones that we
would actually want to compute?

— The argument does not even give any example of
something that can’t be done, it just says that
such an example exists

* We haven’t used much of anything about
what computers (programs or people) can do

— Once we figure that out, we’ll be able to show
that some of these functions are really important

Autumn 201 CSE 311

Turing Machines

Church-Turing Thesis

Any reasonable model of computation that includes
all possible algorithms is equivalent in power to a
Turing machine

* Evidence
— Intuitive justification

— Huge numbers of equivalent models to TM'’s
based on radically different ideas

Components of Turing’s Intuitive
Model of Computers

Finite Control

— Brain/CPU that has only a finite # of possible “states of
mind”

¢ Recording medium

— An unlimited supply of blank “scratch paper” on which to
write & read symbols, each chosen from a finite set of
possibilities

— Input also supplied on the scratch paper

* Focus of attention

— Finite control can only focus on a small portion of the
recording medium at once

— Focus of attention can only shift a small amount at a time

Autumn 2011 CSE 311

What is a Turing Machine?

Autumn 2011 CSE 311

What is a Turing Machine?

* Recording Medium
— An infinite read/write “tape” marked off into cells
— Each cell can store one symbol or be “blank”

— Tape is initially all blank except a few cells of the tape containing
the input string

— Read/write head can scan one cell of the tape - starts on input
* In each step, a Turing Machine
— Reads the currently scanned symbol
— Based on state of mind and scanned symbol
« Overwrites symbol in scanned cell
* Moves read/write head left or right one cell
* Changes to a new state
* Each Turing Machine is specified by its finite set of rules

What is a Turing Machine?

Autumn 2011 CSE 311

Turing Machine = Ideal Java/C Program

* |deal C/C++/Java programs

— Just like the C/C++/Java you're used to
programming with, except you never run out of
memory

 constructor methods always succeed
* malloc never fails
* Equivalent to Turing machines except a lot
easier to program !
— Turing machine definition is useful for breaking
computation down into simplest steps
— We only care about high level so we use programs
12

Turing’s idea: Machines as data

* Original Turing machine definition
— A different “machine” M for each task

— Each machine M is defined by a finite set of
possible operations on finite set of symbols

* M has a finite description as a sequence of
symbols, its “code”

* You already are used to this idea:
— We’'ll write <P> for the code of program P

—i.e. <P>is the program text as a sequence of ASCI|
symbols and P is what actually executes

Turing’s Idea: A Universal Turing
Machine

* A Turing machine interpreter U

— On input <P> and its input x, U outputs the same thing as P
does on input x

— At each step it decodes which operation P would have
performed and simulates it.

* One Turing machine is enough
— Basis for modern stored-program computer
* Von Neumann studied Turing’s UTM design
input output X — output
x—|P —P(x) <P>— —P(x)

Halting Problem

* Given: the code of a program P and an input x
for P, i.e. given (<P>,x)
* Qutput: 1if P halts on input x
0 if P does not halt on input x

Theorem (Turing): There is no program that
solves the halting problem
“The halting problem is undecidable”

Undecidability of the Halting Problem

* Suppose that there is a program H that
computes the answer to the Halting Problem
* We'll build a table with
— all the possible programs down one side
—all the possible inputs along the other side

¢ Then we'll use the supposed program H to build a

new program that can’t possibly be in the table!

input x
A 0100 01 10 11 000 001 010 011
A 10110 1 11 0 0 0 1.
0O |(1t101 0 1 1 O 1 1 1.
A 1 1010 0 0 0 O 0 0 1.
Q,-OO o110 1 0 1 1 0 1 0 ..
801 o111 1 11 0 0 0 1.
810 1100 0 1 1 O 1 1 1.
E11 1011 0 0 0 O 0 0 1.
gOOOO 111 1 0 1 1 0 1 0 ..
o001 .
Q-.
(<P>,x) entry is 1 if program P halts on input x
and 0 if it runs forever

17

A note on the table

* To make it easier to draw we’ve allowed every
string to be the code of some program

— We can just interpret each string that isn’t well-
formed to always halt whenever we try to run it.

* Alternatively, we could have only included
rows and columns that are codes for programs
— These are the only ones that matter anyway

Diagonal construction

« Consider a row corresponding to some program code
<P>
— the infinite sequence of 0’s and 1’s in that row of the table
is like a fingerprint of P
* Suppose a program H for the halting problem exists
— Then it could be used to figure out the value of any entry
in the table
— We'll use it to create a new program D that has a different
fingerprint from every row in the table
— But that’s impossible since there is a row for every
program ! Contradiction

input x

input x
A 0100 01 10 11 000 001 010 011
A 0110 1 11 0 0 O 1.
o (1101 0 1 1 O 1 1 1.
A1 (1010 0 0O0 O O O 1.
aeo00 110 1 01 1 0 1 0.
%01 o111 1 1 1 0 0 O 1.
810 1100 0 1 1 O 1 1 1.
g1|1 011 0 0 0 0 O O 1.
g®o00j0 111 1 0 1 A1 0 1 0 ..
goo01 .
D..
(<P>,x) entry is 1 if program P halts on input x
and 0 if it runs forever

21

A 0100 01 10 11 000 001 010 011

A 10110 1 1 1 0 0 0 1.

o (1101 0 1 1 O 1 1 1.
L 1010 0 0 0 O 0 0 1.
Q,-OO o110 1 0 1 1 0 1 0 ..
_801 o111 1 11 0 0 0 1.
810 1100 0 1 1 O 1 1 1.
c11|1 011 0 0 0 O 0 0 1.
®000/0 111 1 0 1 1 0 1 0 ..
8001/ .

Q-.
(<P>,x) entry is 1 if program P halts on input x
and 0 if it runs forever
20
input x Flipped Diagonal
A 010001 10 11 000 001 010 O11 ...

A (1 110 1 11 0 0 0 1.

o |(1too1 0o 1 1 O 1 1 1.
A1 (10000 OO O O O 1.
Q/-OO o111 1 0 1 1 0 1 0 ..
%01 0111 0 1 1 0 0 0 1.
810 1100 0 0 1 O 1 1 1.
g1t 011 0 0 1 O 0 0 1.
©o00/0 111 1 0 1 0 0 1 0 ..
g001 .

D..
Want to create a new program whose halting
properties are given by the flipped diagonal
22

Code for D assuming subroutine H that solves
the Halting Problem

¢ Function D(x):
—if H(x,x)=1 then
* while (true); /* loop forever */
—else
* no-op; /* do nothing and halt */
— endif

* D’s fingerprint is different from every row of the
table

— D can’t be a program so H cannot exist! 23

That’s it!

* We proved that there is no computer program
that can solve the Halting Problem.

* This tells us that there is no compiler that can
check our programs and guarantee to find any
infinite loops they might have
— The full story is even worse

24

Using undecidability of the halting
problem
* We have one problem that we know is
impossible to solve
— Halting problem
* Showing this took serious effort

» We'd like to use this fact to derive that other
problems are impossible to solve
—don’t want to go back to square one to do it

25

Another undecidable problem

The “always halts” problem
— Given: <Q>, the code of a program Q
— Output: 1 if Q halts on every input
0if not.

Claim: the “always halts” problem is undecidable
Proof idea:

— Show we could solve the Halting Problem if we had a
solution for the “always halts” problem.

— No program solving for Halting Problem exists —=> no
program solving the “always halts” problem exists

26

What we would like

* To solve the Halting Problem need to handle inputs
of the form (<P>,x)
¢ Our program will create a new program code <Q> so
that
— If P halts on input x
* then Q always halts
— If P runs forever on input x
* then Qruns forever on at least one input

¢ In fact, the <Q> we create will act the same on all
inputs

27

Creating <Q> from (<P>,x)

* Given (<P>,x) modify code of P to:

— Replace all input statements of P that read input
X, by assignment statements that ‘hard-code’ x in
2]

This creates a new program text <Q>

It would be easy to write a program T that
changes (<P>,x) to <Q>

28

The transformation

int main(){ int main(){
.s”canf(”%d",&u); u= 123;
.s"canf(“%d",&v); v= 712;
123712

(<P>,x) <Q>

29

Program to solve Halting Problem if “always
halts” were decidable

* Suppose “always halts” were solvable by

program A

* On input (<P>,x)

— execute the program T to transform (<P>,x) into
<Q> as on last slide

— call A with <Q> (the output of T) as its input and
use A’s output as the answer.

* This would do the job of H which we know

can’t exist so A can’t exist

