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Announcements

• Reading

– 7th edition:  2.5 (Cardinality) + p. 201 and 13.5 

– 6th edition: pp. 158-160 (Cardinality)+ p 177 and 

12.5

– 5th edition: Pages 233-236 (Cardinality), p. ?  and 

11.5

• Homework 10 out today, due next Friday

– Homework 9 due today
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Last lecture highlights

• Sequential Circuits for FSMs

– Combinational logic for transition function

– Sequential logic for iteration

• Carry-look-ahead Adders

– C4=G4+G3P4+G2P3P4+G1P2P3P4+G0P1P2P3P4 etc.

• Composition trees and Parallel Prefix
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Boolean Circuit 

for State 

Transition 

Function

current state next state

input signals output signals
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Computing & Mathematics

Computers as we know them grew out of a 

desire to avoid bugs in mathematical 

reasoning
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A Brief History of Reasoning

• Ancient Greece

– Deductive logic

• Euclid’s Elements

– Infinite things are a problem

• Zeno’s paradox
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A Brief History of Reasoning

• 1670’s-1800’s  Calculus & infinite series

– Suddenly infinite stuff really matters

– Reasoning about infinite still a problem

• Tendency for buggy or hazy proofs

• Mid-late 1800’s

– Formal mathematical logic

• Boole   Boolean Algebra

– Theory of infinite sets and cardinality     

• Cantor

“There are more real #’s than rational #’s”
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A Brief History of Reasoning

• 1900

– Hilbert's famous speech outlines goal: 
mechanize all of mathematics               

23 problems

• 1930’s

– Gödel, Turing show that Hilbert’s program is 
impossible.

• Gödel’s Incompleteness Theorem

• Undecidability of the Halting Problem

Both use ideas from Cantor’s proof about reals & rationals
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A Brief History of Reasoning

• 1930’s 

– How can we formalize what  algorithms are 

possible?

• Turing machines (Turing, Post)

– basis of modern computers

• Lambda Calculus (Church)

– basis for functional programming

• µ-recursive functions (Kleene)

– alternative functional programming basis

All 
are

equivalent!
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Turing Machines

Church-Turing Thesis

Any reasonable model of computation that includes 

all possible algorithms is equivalent in power to a 

Turing machine

• Evidence

– Huge numbers of equivalent models to TM’s 

based on radically different ideas

Starting with Cantor

• How big is a set?

– If S is finite, we already defined |S| to be the 

number of elements in S.

– What if S is infinite?  Are all of these sets the same 

size?

• Natural numbers  ℕℕℕℕ

• Even natural numbers

• Integers ℤℤℤℤ

• Rational numbers ℚℚℚℚ

• Real numbers ℝℝℝℝ

Autumn 2011 CSE 311 10

Cardinality

Def:  Two sets A and B are the same size (same 

cardinality) iff there is a 1-1 and onto function 

f:A→B

Also applies to infinite sets
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Cardinality

• The natural numbers and even natural 

numbers have the same cardinality:

0    1    2    3    4    5     6     7     8     9    10 ...

0    2    4    6    8   10   12  14   16   18   20 ...

n is matched with 2n
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Countability

Definition:   A set is countable iff it is the same 

size as some subset of the natural numbers

Equivalent:  A set S is countable iff there is an 

onto function g: �	→	S

Equivalent:  A set S is countable iff we can write

S={s1, s2, s3, ...}
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The set of all integers is countable
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Is the set of positive rational numbers

countable?

• We can’t do the same thing we did for the 

integers

– Between any two rational numbers there are an 

infinite number of others

Autumn 2011 CSE 311 15

Positive Rational Numbers

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...

2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 ...

3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 ...

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 ...

5/1 5/2 5/3 5/4 5/5 5/6 5/7 ...

6/1 6/2 6/3 6/4 6/5 6/6 ...

7/1 7/2 7/3 7/4 7/5 ....

... ... ... ... ...
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1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...

2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 ...

3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 ...

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 ...

5/1 5/2 5/3 5/4 5/5 5/6 5/7 ...

6/1 6/2 6/3 6/4 6/5 6/6 ...

7/1 7/2 7/3 7/4 7/5 ....

... ... ... ... ...

{Positive Rational Numbers} is Countable
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{Positive Rational Numbers} is Countable

ℚℚℚℚ
+ 

=   {1/1,  2/1,1/2, 3/1,2/2,1/3, 4/1,2/3,3/2,1/4,   

5/1,4/2,3/3,2/4,1/5, ...}

List elements in order of

– numerator+denominator

– breaking ties according to denominator

• Only k numbers when the total is k

Technique is called “dovetailing”
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Claim: Σ* is countable for every finite Σ
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The set of all Java programs is 

countable
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What about the Real Numbers?

Q: Is every set is countable?

A: Theorem [Cantor] The set of real numbers

(even just between 0 and 1) is NOT countable

Proof is by contradiction using a new method 

called “diagonalization”
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Proof by contradiction

• Suppose that  ℝ[0,1) is countable

• Then there is some listing of all elements          
ℝ[0,1)  = { r1, r2, r3, r4, ... }  

• We will prove that in such a listing there must 
be at least one missing element which 
contradicts statement “ℝ[0,1) is countable”

• The missing element will be found by looking 
at the decimal expansions of  r1, r2, r3, r4, ...
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Real numbers

between 0 and 1: ℝ[0,1)

• Every number between 0 and 1 has an infinite 

decimal expansion:

1/2 =  0.50000000000000000000000...

1/3 =  0.33333333333333333333333...

1/7 =  0.14285714285714285714285...

π -3 = 0.14159265358979323846264...

1/5  = 0.19999999999999999999999...

= 0.20000000000000000000000...
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Representations as decimals

Representation is unique except for the cases 

that decimal ends in all 0’s or all 9’s.

x = 0.19999999999999999999999...

10x = 1.9999999999999999999999...

9x =1.8  so  x=0.200000000000000000...

Won’t allow the representations ending in all 9’s

All other representations give elements of ℝ[0,1)
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Supposed Listing of ℝ[0,1)

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0 ... ...

r2 0. 3 3 3 3 3 3 3 3 ... ...

r3 0. 1 4 2 8 5 7 1 4 ... ...

r4 0. 1 4 1 5 9 2 6 5 ... ...

r5 0. 1 2 1 2 2 1 2 2 ... ...

r6 0. 2 5 0 0 0 0 0 0 ... ...

r7 0. 7 1 8 2 8 1 8 2 ... ...

r8 0. 6 1 8 0 3 3 9 4 ... ...

... .... ... .... .... ... ... ... ... ... ...
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Supposed Listing of ℝ[0,1)

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0 ... ...

r2 0. 3 3 3 3 3 3 3 3 ... ...

r3 0. 1 4 2 8 5 7 1 4 ... ...

r4 0. 1 4 1 5 9 2 6 5 ... ...

r5 0. 1 2 1 2 2 1 2 2 ... ...

r6 0. 2 5 0 0 0 0 0 0 ... ...

r7 0. 7 1 8 2 8 1 8 2 ... ...

r8 0. 6 1 8 0 3 3 9 4 ... ...

... .... ... .... .... ... ... ... ... ... ...Autumn 2011 CSE 311 26
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Flipped Diagonal 

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0 ... ...

r2 0. 3 3 3 3 3 3 3 3 ... ...

r3 0. 1 4 2 8 5 7 1 4 ... ...

r4 0. 1 4 1 5 9 2 6 5 ... ...

r5 0. 1 2 1 2 2 1 2 2 ... ...

r6 0. 2 5 0 0 0 0 0 0 ... ...

r7 0. 7 1 8 2 8 1 8 2 ... ...

r8 0. 6 1 8 0 3 3 9 4 ... ...

... .... ... .... .... ... ... ... ... ... ...Autumn 2011 CSE 311 27

Flipping Rule: 

If digit is 5, make it 1
If digit is not 5, make it 5

Flipped Diagonal Number D

1 2 3 4 5 6 7 8 9 ...

D = 0. 1

5

5

1

5

5

5

5
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But for all n, we have
D≠≠≠≠rn since they differ on

nth digit (which is not 0 or 9)

⇒ list was incomplete

⇒	ℝ[0,1) is not countable

D is in ℝ[0,1)

The set of all functions  f : ℕ→{0,1,...,9}

is not countable 
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Non-computable functions

• We have seen that

– The set of all (Java) programs is countable

– The set of all functions f : ℕ→{0,1,...,9} is not 

countable

• So... 

– There must be some function  f : ℕ→{0,1,...,9} that 

is not computable by any program!
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