CSE 311 Foundations of Computing I

Lecture 26
Cardinality, Countablity \& Computability Autumn 2011

Autumn 201 CSE 311

Last lecture highlights

- Sequential Circuits for FSMs
- Combinational logic for transition function

- Sequential logic for iteration
- Carry-look-ahead Adders
$-\mathrm{C}_{4}=\mathrm{G}_{4}+\mathrm{G}_{3} \mathrm{P}_{4}+\mathrm{G}_{2} \mathrm{P}_{3} \mathrm{P}_{4}+\mathrm{G}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}+\mathrm{G}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}$ etc.
- Composition trees and Parallel Prefix

Autumn 2011
CSE 311

Announcements

- Reading
- 7th edition: 2.5 (Cardinality) + p. 201 and 13.5
- 6th edition: pp. 158-160 (Cardinality)+ p 177 and 12.5
- 5th edition: Pages 233-236 (Cardinality), p. ? and 11.5
- Homework 10 out today, due next Friday
- Homework 9 due today

Autumn 2011 CSE 311 \qquad

Last lecture highlights
- Sequential Circuits for FSMs - Combinational logic for transition function
- Carry-look-ahead Adders $-\mathrm{C}_{4}=\mathrm{G}_{4}+\mathrm{G}_{3} \mathrm{P}_{4}+\mathrm{G}_{2} P_{3} \mathrm{P}_{4}+\mathrm{G}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}+\mathrm{G}_{0} \mathrm{P}_{1} P_{2} P_{3} P_{4} \text { etc. }$ - Composition trees and Parallel Prefix
Aulum2011

Computing \& Mathematics

Computers as we know them grew out of a desire to avoid bugs in mathematical reasoning

A Brief History of Reasoning

- 1900
- Hilbert's famous speech outlines goal: mechanize all of mathematics 23 problems
- 1930’s
-Gödel, Turing show that Hilbert's program is impossible.
- Gödel's Incompleteness Theorem
- Undecidability of the Halting Problem

Both use ideas from Cantor's proof about reals \& rationals $\quad 7$

A Brief History of Reasoning

- 1930's
-How can we formalize what algorithms are possible?
- Turing machines (Turing, Post)
- basis of modern computers
- Lambda Calculus (Church)
- basis for functional programming equivalent!
- μ-recursive functions (Kleene)
- alternative functional programming basis

Turing Machines

Church-Turing Thesis

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

- Evidence
- Huge numbers of equivalent models to TM's based on radically different ideas

Starting with Cantor

- How big is a set?
- If S is finite, we already defined $|S|$ to be the number of elements in S .
- What if S is infinite? Are all of these sets the same size?
- Natural numbers \mathbb{N}
- Even natural numbers
- Integers \mathbb{Z}
- Rational numbers \mathbb{Q}
- Real numbers \mathbb{R}

Autumn 2011

Cardinality

Def: Two sets A and B are the same size (same cardinality) iff there is a 1-1 and onto function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$
(a) (b)

Also applies to infinite sets
Autumn 2011
CSE 311

Cardinality

- The natural numbers and even natural numbers have the same cardinality:
$\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \ldots\end{array}$
$\begin{array}{lllllllllllll}0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & \ldots\end{array}$
n is matched with $2 n$

Countability
Definition: A set is countable iff it is the same size as some subset of the natural numbers Equivalent: A set S is countable iff there is an onto function $\mathrm{g}: \mathbb{N} \rightarrow \mathrm{S}$ Equivalent: A set S is countable iff we can write $\mathrm{S}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \ldots\right\}$ Autum2011

The set of all integers is countable

Is the set of positive rational numbers countable?

- We can't do the same thing we did for the integers
- Between any two rational numbers there are an infinite number of others

Positive Rational Numbers

```
1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8
2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8
3/1
4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 ...
5/1 5/2 5/3 5/4 5/5 5/6 5/7 ...
6/1 6/2 6/3 6/4 6/5 6/6
7/1 7/2 7/3 7/4 7/5 ....
    ... ... ... ... ...
```

Autumn 2011
\{Positive Rational Numbers\} is Countable
$\mathbb{Q}^{+}=\{1 / 1,2 / 1,1 / 2,3 / 1,2 / 2,1 / 3,4 / 1,2 / 3,3 / 2,1 / 4$, 5/1,4/2,3/3,2/4,1/5, ...\}

List elements in order of

- numerator+denominator
- breaking ties according to denominator
- Only k numbers when the total is k

Technique is called "dovetailing"

Claim: Σ^{*} is countable for every finite Σ

Autumn 2011

The set of all Java programs is countable

Autumn 2011 CSE 31

What about the Real Numbers?

Q: Is every set is countable?

A: Theorem [Cantor] The set of real numbers (even just between 0 and 1) is NOT countable

Proof is by contradiction using a new method called "diagonalization"

Autumn 2011 CSE 311

Proof by contradiction

- Suppose that $\mathbb{R}^{[0,1)}$ is countable
- Then there is some listing of all elements

$$
\mathbb{R}^{[0,1)}=\left\{r_{1}, r_{2}, r_{3}, r_{4}, \ldots\right\}
$$

- We will prove that in such a listing there must be at least one missing element which contradicts statement " $\mathbb{R}^{[0,1)}$ is countable"
- The missing element will be found by looking at the decimal expansions of $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$

Autumn 2011

Representations as decimals

Representation is unique except for the cases that decimal ends in all 0's or all 9's.

$$
\begin{aligned}
x & =0.19999999999999999999999 \ldots \\
10 x & =1.9999999999999999999999 \ldots \\
9 x & =1.8 \text { so } x=0.200000000000000000 \ldots
\end{aligned}
$$

Won't allow the representations ending in all 9's All other representations give elements of $\mathbb{R}^{[0,1)}$

Autumn 2011

Flipped Diagonal

The set of all functions $f: \mathbb{N} \rightarrow\{0,1, \ldots, 9\}$ is not countable

Supposed Listing of $\mathbb{R}^{[0,1)}$

	1	2	3	4	5	6	7	8	9	...
$\mathrm{r}_{1} \quad 0$.	5	0	0	0	0	0	0	0
$\mathrm{r}_{2} \quad 0$.	3	3	3	3	3	3	3	3
$\mathrm{r}_{3} \quad 0$.	1	4	2	8	5	7	1	4
$\mathrm{r}_{4} \quad 0$.	1	4	1	5	9	2	6	5
$\mathrm{r}_{5} \quad 0$.	1	2	1	2	2	1	2	2	...	\cdots
$\mathrm{r}_{6} \quad 0$.	2	5	0	0	0	0	0	0	...	\cdots
$\mathrm{r}_{7} \quad 0$.	7	1	8	2	8	1	8	2
$\mathrm{r}_{8} \quad 0$.	6	1	8	0	3	3	9	4
Atremn $20 . \cdots$	\cdots	${ }_{11} \cdot *$	26

Flipped Diagonal Number D

$$
\mathrm{D}=0 . \quad 1{ }_{5}
$$

D is in $\mathbb{R}^{[0,1)} \quad 5$
But for all \mathbf{n} we have
$D \neq r_{\text {s }}$ since they differ on 5
$\mathbf{n}^{\text {th }}$ digit (which is not $\mathbf{0}$ or 9) 5
\Rightarrow list was incomplete
$\Rightarrow \mathbb{R}^{[0,1)}$ is not countable
Autumn 2011 CSE 311

Non-computable functions

- We have seen that
- The set of all (Java) programs is countable
- The set of all functions $f: \mathbb{N} \rightarrow\{0,1, \ldots, 9\}$ is not countable
- So...
- There must be some function $f: \mathbb{N} \rightarrow\{0,1, \ldots, 9\}$ that is not computable by any program!

