CSE 311 Foundations of
Computing |

Lecture 25

Circuits for FSMs, Carry-Look-Ahead
Adders

Autumn 2011

Announcements

* Nice overview of adder circuits at
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html

Last lecture highlights

* Languages not recognized by any DFA
—{0"1":n>0}
— Binary Palindromes
— Strings of Balanced Parentheses

» Using DFAs for efficient pattern matching

FSMs in Hardware

¢ Encode the states in binary: e.g. states 0,1,2,3
represented as 000,100, 010,001, or as 00,01,10,11.

* Encode the input symbols as binary signals
* Encode the outputs possible as binary signals

* Build combinational logic circuit to compute
transition function:

current state BOOIean Circuit for — nextstate

State Transition |
Function =

input signals output signals

FSMs in Hardware

* Combine with sequential logic for
— Registers to store bits of state
— Clock pulse
« At start of clock pulse, current state bits from
registers and input signals are released to the circuit
* At end of clock pulse, output bits are produced and
next state bits are stored back in the same registers

T

current state Boolean Circuit for [nextstate

State Transition
Function

(1!

input signals output signals

FSM for binary addition

* Assume that the two integers are a,,;...a,a,a, and
b,.;...b,b by and bits arrive together as [ag,b,] then
[a,,b,] etc.

[0,0]

[0,1],[1,0]

[0,0]
[1,1] Generate a carry of 1
[0,11,[1,0] Propagate a carry of 1 if it was already there

FSM for binary addition using output
on edges

* Assume that the two integers are a, ;...2,a,3, and
b,.,...b,b;b, and bits arrive together as [ay,b,] then

[a;,b,] etc.
[0,0]:0 [1,11:1
N 1110 N
S 001 X7
[0,11,[1,0]:1 [0,11,[1,0]:0

[1,1] Generate a carry of 1
[0,1]1,[1,0] Propagate a carry of 1 if it was already there

Example: 1-bit Full Adder

input signals A ‘i
1-Bit Full Adder
A+
D
Cg Cout
current state] |, nextstate
B
Cm CinD—+ CO\A
AD—
=D,
o 'D—k)Dv—DSum
output S}m

Autumn 2011

FSMs without sequential logic

* What if the entire input bit-strings are
available at all once at the start?
— E.g. 64-bit binary addition

* Don’t want to wait for 64 clock cycles to
compute the output!

* Suppose all input strings have length n

— Can chain together n copies of the state transition
circuit as one big combinational logic circuit

A 2-bit ripple-carry adder

a b
1 1 a;, by a; by
1-Bit Full Adder |

0 —{Ci, Cou [1Cin Cou |—

c-g:D)‘_’ Cout

—> —>
G | o Can ' '
Sum, Sum,
AD—)
EDup ...
}
Sum

Autumn 2011 CSE311

Problem with Chaining Transition
Circuits

* Resulting Boolean circuit is “deep”
* There is a small delay at each gate in a

Boolean circuit
— The clock pulse has to be long enough so that all
combinational logic circuits can be evaluated
during a single pulse
— Deep circuits mean slow clock.

Speeding things up?
* To go faster, need to work on both 15t half and
2"d half of the input at once

— How can you determine action of FSM on 2" half
without knowing state reached after reading 15t

half?
b1b2"'bn/2rbn/2+1 "'bn—1bn
what state?

* |dea: Figure out what happens in 2" half for
all possible values of the middle state at once

utumn 201 CSE 311

Transition Function Composition

State 0 1
So So S1
S1 So S2
Sz So S3
S3 S3 S3

Transition table gives a function for each input symbol

f PN f
°<g
(o) 0

State reached on input b,...b, is
fo(Fo g+ (Foy(fo (start)))...)= £, o fy_ ..o fi 0 fy (start)

Autumn 201 CSE 311

Transition Function Composition

Constant size 2-level b, b, b; b, bs be b; b,
Boolean logic to [;} [; [; [; g [; [; [;

« convert input symbol to
bits for transition function fb1 sz fb3 fb4 fb5 fbs fb7 fba
L S A A S S S A [

A s B v B v

+ compute composition of fo,ofp, foofn, fogofi, fogofe,
two transition functions -
A [e W
1 T
fb4°fb3°fb2°fb| fbgofb7°fbs°fb5
gef 4 ! | }
o
Total depth 2 log, n
and size ~n L1 1 N I () P P 1

Autumn 201 CSE 31 4

Carry-Look-Ahead Adder

Compute generate G=a; A b, [1,1]
propagate P=a, @ b, [0,1],[1,0]
These determine transition and output functions
—Carry C=G;V (P;AC_,) also written C=G+P,C;,
—Sum;=P,; D C;,;
Unwinding, we get
Co=Gy, C;=G+G,P, C,=G,+G,P,+G,P,P,
C3=G3+G,P3+G,P,P3+GyP,P,P;
C,=G,+G;3P,+G,P;P,+G,P,P;P,+G,P,P,P;P,
etc.

Carry-Look-Ahead Adder

Compute all generate G;= a; A b; [1,1]
propagate P=a; @ b; [0,1],[1,0]
Then compute all:
Co=Gy, C;=G+G,P, C,=G,+G,P,+G,P,P,
C3=G3+G,P3+G,P,P3+GyP,P,P;
C,=G,+G;P,+G,P,P,+G,P,P,P,+G,P,P,P.P, etc.
Finally, use these to compute
Sumg=P, Sum;=P, B C, Sum,=P,DC,
Sum;=P; @ C, Sum,=P,@® C; Sumgs=P; D C, etc
If all C; are computed using 2-level logic, total depth is 4.

Adders using Composition

Carry-look-ahead circuit for carry C, ,
has 2 + 3 +...+ n = (n+2)(n-1)/2 gates
— a lot more than ripple-carry adder circuit.

Composition gives an alternative approach

Composition: (G,P) followed by (G’,P’) gives the
same effect as (G”,P”’) where
—G"=G'V(GAP’) and P”’=P’ AP also written as
G”=G'+G P’ and P’=P'P

Autumn 201 CSE 311 7

Adders using Composition

Composition: (G,P) followed by (G’,P’) gives the
same effect as (G”,P”’) where
—G"=G'V(GAP’) and P”=P’ AP also written as
G"’=G'+G P’ and P’=P'P
Use this for the circuit component w
in transition function composition tree
— Computes C,;indepth 2 log, n and size =n

* But we need all of C, C,, ..., C,; not just C, ;

Autumn 201 CSE 311

Transition Function Composition

Constant size 2-level
Boolean logic to
« convert input symbol to

by b, b, by b, b; bg b,

ARYARY AR AR R

bits for transition function fbo fb| sz fb3 fb4 fb5 fbs fb-,
[A A A) bbby

o o o o
fo
» compute composition of fb|°fbo fb3°sz fb5°fb4 fb7°fb6
two transition functions b
f, 9 - /o]
7
fozofo, o, o, foofosofosofo,
geof 4 i | }

o

Total depth 2 log, n

and size ~n iy Fog Ty, Tog oy T, Ty

Autumn 201 CSE 31

Computing all the values

* We need to compute all of
fo,0fnofbsofn,ofb,0fn,ofh of, Already computed
fbsofbs°fb4°fb3°sz°fb1°fbo =fb6°(fbsofb4)°(fb3°fb2°fb1°fb0)

fb5°fb4°fb3°sz°fb1°fbo = (fb5°fb4) ° (fb3°fb2°fb1°fbo)

fb4°fb3°fb2°fb1°fbo = fb4° (fb3°fb2°fb1°fb0)
fu,0fn,0f,of0, Already computed
sz"fbl"fbo = sz" (fblofbo)

fu,ofp, Already computed
foo Already computed

Parallel Prefix Circuit

* The general way of doing this efficiently is
called a parallel prefix circuit

— Designed and analyzed by Michael Fischer and
Richard Ladner (University of Washington)

* Uses the adder composition operation that
sets G”’=G'+G P’ and P”’=P’P
— we just show it for the part for computing P”’
which is a Parallel Prefix AND Circuit

The Parallel Prefix AND Circuit

) Parallel Prefix
: n inputs

n/2 AND gates
per level

_+ | n2inputs log,n levels

Parallel Prefix
!
L
=
I
1

PI PZ"'Pn/ZPn/2+I

i
] i
1 l 1
1 1
P 1 ' P,P,...P,

Parallel Prefix 1
n2inputs 1 P,P,

Parallel Prefix Adder

* Circuit depth 2log, n
* Circuit size 4nlog, n

* Actual adder circuits in hardware use
combinations of these ideas and more but this
gives the basics

* Nice overview of adder circuits at
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html

Autumn 201 CSE 311

