CSE 311 Foundations of Computing I

Lecture 25
Circuits for FSMs, Carry-Look-Ahead Adders
Autumn 2011

Autumn 201
CSE 311

Announcements

- Nice overview of adder circuits at http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html

Autumn 2011 CSE 311

Last lecture highlights

- Languages not recognized by any DFA
- \{ $0^{n 1} 1^{n}$: $\left.n \geq 0\right\}$
- Binary Palindromes
- Strings of Balanced Parentheses
- Using DFAs for efficient pattern matching

FSMs in Hardware

- Combine with sequential logic for
- Registers to store bits of state
- Clock pulse
- At start of clock pulse, current state bits from registers and input signals are released to the circuit
- At end of clock pulse, output bits are produced and next state bits are stored back in the same registers

FSMs in Hardware

- Encode the states in binary: e.g. states 0,1,2,3 represented as 000,100, 010,001, or as 00,01,10,11.
- Encode the input symbols as binary signals
- Encode the outputs possible as binary signals
- Build combinational logic circuit to compute transition function:

FSM for binary addition using output on edges

- Assume that the two integers are $a_{n-1} \ldots a_{2} a_{1} a_{0}$ and $\mathbf{b}_{\mathrm{n}-1} \ldots \mathbf{b}_{2} \mathbf{b}_{1} \mathbf{b}_{0}$ and bits arrive together as $\left[\mathrm{a}_{0}, \mathbf{b}_{0}\right]$ then [a_{1}, b_{1}] etc.

[1,1] Generate a carry of 1
[$0,1,[1,0]$ Propagate a carry of 1 if it was already there

Example: 1-bit Full Adder

Autumn 2011

FSMs without sequential logic

- What if the entire input bit-strings are available at all once at the start?
- E.g. 64-bit binary addition
- Don't want to wait for 64 clock cycles to compute the output!
- Suppose all input strings have length \mathbf{n}
- Can chain together \mathbf{n} copies of the state transition circuit as one big combinational logic circuit

Autumn 2011
CSE 311

A 2-bit ripple-carry adder

Speeding things up?

- To go faster, need to work on both $1^{\text {st }}$ half and $2^{\text {nd }}$ half of the input at once
- How can you determine action of FSM on $2^{\text {nd }}$ half without knowing state reached after reading $1^{\text {st }}$ half?

$$
\mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{n} / 2} \boldsymbol{\uparrow}_{\text {what state? }} \mathrm{b}_{\mathrm{n} / 2+1} \cdots \mathrm{~b}_{\mathrm{n}-1} \mathrm{~b}_{\mathrm{n}}
$$

- Idea: Figure out what happens in $2^{\text {nd }}$ half for all possible values of the middle state at once

Transition Function Composition

State	$\mathbf{0}$	$\mathbf{1}$
$\mathrm{s}_{\mathbf{0}}$	$\mathrm{s}_{\mathbf{0}}$	s_{1}
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{\mathbf{3}}$
$\mathrm{s}_{\mathbf{3}}$	$\mathrm{s}_{\mathbf{3}}$	$\mathrm{s}_{\mathbf{3}}$

Transition table gives a function for each input symbol

State reached on input $\mathbf{b}_{\mathbf{1}} \ldots \mathbf{b}_{\mathrm{n}}$ is
$f_{b_{n}}\left(f_{b_{n-1}} \ldots\left(f_{b_{2}}\left(f_{b_{1}}(\right.\right.\right.$ start $\left.\left.\left.)\right)\right) \ldots\right)=f_{b_{n}} \circ f_{b_{n-1}} \ldots \circ f_{b_{2}} \circ f_{b_{1}}$ (start)
\qquad
CSE 31

Transition Function Composition

Carry-Look-Ahead Adder

Compute all generate $G_{i}=a_{i} \wedge b_{i}$
propagate $\mathrm{P}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} \oplus \mathrm{b}_{\mathrm{i}}$
[0,1],[1,0]
Then compute all:

$$
\begin{aligned}
& \mathrm{C}_{0}=\mathrm{G}_{0} \quad \mathrm{C}_{1}=\mathrm{G}_{1}+\mathrm{G}_{0} P_{1} \quad \mathrm{C}_{2}=\mathrm{G}_{2}+\mathrm{G}_{1} P_{2}+G_{0} P_{1} P_{2} \\
& \mathrm{C}_{3}=\mathrm{G}_{3}+\mathrm{G}_{2} P_{3}+\mathrm{G}_{1} P_{2} P_{3}+\mathrm{G}_{0} P_{1} P_{2} P_{3} \\
& \mathrm{C}_{4}=\mathrm{G}_{4}+\mathrm{G}_{3} P_{4}+\mathrm{G}_{2} P_{3} P_{4}+G_{1} P_{2} P_{3} P_{4}+G_{0} P_{1} P_{2} P_{3} P_{4} \quad \text { etc. }
\end{aligned}
$$

Finally, use these to compute

$$
\text { Sum }_{0}=P_{0} \quad \text { Sum }_{1}=P_{1} \oplus C_{0} \quad \text { Sum }_{2}=P_{2} \oplus C_{1}
$$

$$
\text { Sum }_{3}=P_{3} \oplus C_{2} \quad \text { Sum }_{4}=P_{4} \oplus C_{3} \quad \text { Sum }_{5}=P_{5} \oplus C_{4} \text { etc }
$$

If all C_{i} are computed using 2-level logic, total depth is 4 .

Autumn 2011
CSE 311

Adders using Composition

Carry-look-ahead circuit for carry $\mathrm{C}_{\mathrm{n}-1}$ has $2+3+\ldots+n=(n+2)(n-1) / 2$ gates

- a lot more than ripple-carry adder circuit.

Composition gives an alternative approach
Composition: (G, P) followed by ($\mathrm{G}^{\prime}, \mathrm{P}^{\prime}$) gives the same effect as ($G^{\prime \prime}, \mathrm{P}^{\prime \prime}$) where
$-G^{\prime \prime}=G^{\prime} \vee\left(G \wedge P^{\prime}\right)$ and $P^{\prime \prime}=P^{\prime} \wedge P$ also written as $G^{\prime \prime}=G^{\prime}+G P^{\prime}$ and $P^{\prime \prime}=P^{\prime} P$
\qquad

Adders using Composition

Composition: (G, P) followed by ($\mathrm{G}^{\prime}, \mathrm{P}^{\prime}$) gives the same effect as ($G^{\prime \prime}, P^{\prime \prime}$) where

$$
\begin{aligned}
-G^{\prime \prime} & =G^{\prime} \vee\left(G \wedge P^{\prime}\right) \text { and } P^{\prime \prime}=P^{\prime} \wedge P \text { also written as } \\
G^{\prime \prime \prime} & =G^{\prime}+G P^{\prime} \text { and } P^{\prime \prime \prime}=P^{\prime} P
\end{aligned}
$$

Use this for the circuit component in transition function composition tree

- Computes $\mathrm{C}_{\mathrm{n}-1}$ in depth $2 \log _{2} \mathrm{n}$ and size $\approx \mathrm{n}$
- But we need all of $C_{0}, C_{1}, \ldots, C_{n-1}$ not just C_{n-1} Autumn 2011

CSE 311

Parallel Prefix Circuit

- The general way of doing this efficiently is called a parallel prefix circuit
- Designed and analyzed by Michael Fischer and Richard Ladner (University of Washington)
- Uses the adder composition operation that sets $G^{\prime \prime}=G^{\prime}+G P^{\prime}$ and $P^{\prime \prime}=P^{\prime} P$
- we just show it for the part for computing $P^{\prime \prime}$ which is a Parallel Prefix AND Circuit

Autumn 2011 CSE 311

Computing all the values

- We need to compute all of
$f_{b_{7}} \circ f_{b_{6}} \circ f_{b_{5}} \circ f_{b_{4}} \circ f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}}$ Already computed $f_{b_{6}} \circ f_{b_{5}}{ }^{\circ} f_{b_{4}} \circ f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}} \quad=f_{b_{6}}\left(f_{b_{5}} \circ f_{b_{4}}\right) \circ\left(f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}}\right)$
$f_{b_{5}} \circ f_{b_{4}} \circ f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}} \quad=\left(f_{b_{5}} \circ f_{b_{4}}\right) \circ\left(f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}}\right)$
$f_{b_{4}} \circ f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}}$
$f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}}$
$=f_{b_{4}} \circ\left(f_{b_{3}} \circ f_{b_{2}} \circ f_{b_{1}} \circ f_{b_{0}}\right)$ Already computed
$f_{b_{2}}{ }^{\circ} f_{b_{1}} \circ f_{b_{0}}$
$f_{b_{1}}$ of $_{b_{0}}$
$=f_{b_{2}} \circ\left(f_{b_{1}} \circ f_{b_{0}}\right)$
Already computed
Already computed

Parallel Prefix Adder

- Circuit depth $2 \log _{2} n$
- Circuit size $4 \mathrm{n} \log _{2} \mathrm{n}$
- Actual adder circuits in hardware use combinations of these ideas and more but this gives the basics
- Nice overview of adder circuits at http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html

