
CSE 311 Foundations of

Computing I

Lecture 25

Circuits for FSMs, Carry-Look-Ahead
Adders

Autumn 2011

Autumn 2011 CSE 311 1

Announcements

• Nice overview of adder circuits at

http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html

Autumn 2011 CSE 311 2

Last lecture highlights

• Languages not recognized by any DFA

– { 0n1n : n≥0 }

– Binary Palindromes

– Strings of Balanced Parentheses

• Using DFAs for efficient pattern matching

Autumn 2011 CSE 311 3

FSMs in Hardware

• Encode the states in binary: e.g. states 0,1,2,3

represented as 000,100, 010,001, or as 00,01,10,11.

• Encode the input symbols as binary signals

• Encode the outputs possible as binary signals

• Build combinational logic circuit to compute

transition function:

Autumn 2011 CSE 311 4

Boolean Circuit for

State Transition

Function

current state next state

input signals output signals

FSMs in Hardware

• Combine with sequential logic for

– Registers to store bits of state

– Clock pulse

• At start of clock pulse, current state bits from
registers and input signals are released to the circuit

• At end of clock pulse, output bits are produced and
next state bits are stored back in the same registers

Autumn 2011 CSE 311 5

Boolean Circuit for

State Transition

Function

current state next state

input signals output signals

FSM for binary addition

• Assume that the two integers are an-1...a2a1a0 and

bn-1...b2b1b0 and bits arrive together as [a0,b0] then

[a1,b1] etc.

s

Cout=1

1

[0,1],[1,0]

Cout=0

1

Cout=1

0

Cout=0

0

[0,1],[1,0]

[0,0] [0,1],[1,0] [1,1]

[0,1],[1,0]

[1,1]

[0,0]

[1,1]

[0,0]

[0,1],[1,0]

[0,0]
[1,1] Generate a carry of 1
[0,1],[1,0] Propagate a carry of 1 if it was already there

FSM for binary addition using output

on edges

• Assume that the two integers are an-1...a2a1a0 and

bn-1...b2b1b0 and bits arrive together as [a0,b0] then

[a1,b1] etc.

[1,1] Generate a carry of 1

[0,1],[1,0] Propagate a carry of 1 if it was already there

[0,1],[1,0]:1

Cout=0 Cout=1

[0,0]:0

[0,1],[1,0]:0

[0,0]:1

[1,1]:0
[1,1]:1

Example: 1-bit Full Adder

Autumn 2011 CSE 311 8

A

Sum

CoutCin

B

1-Bit Full Adder

A

B

Cin
Sum

A

B

A

Cin

B

Cin

Cout

current state

input signals

next state

output

FSMs without sequential logic

• What if the entire input bit-strings are

available at all once at the start?

– E.g. 64-bit binary addition

• Don’t want to wait for 64 clock cycles to

compute the output!

• Suppose all input strings have length n

– Can chain together n copies of the state transition

circuit as one big combinational logic circuit

Autumn 2011 CSE 311 9

A 2-bit ripple-carry adder

Autumn 2011 CSE 311 10

a0 b0

CoutCin

Sum0

a

Sum

CoutCin

b

1-Bit Full Adder

a1 b1

Sum1

CoutCin0

A

B

Cin
Sum

A

B

A

Cin

B

Cin

Cout

Problem with Chaining Transition

Circuits

• Resulting Boolean circuit is “deep”

• There is a small delay at each gate in a

Boolean circuit

– The clock pulse has to be long enough so that all

combinational logic circuits can be evaluated

during a single pulse

– Deep circuits mean slow clock.

Autumn 2011 CSE 311 11

Speeding things up?

• To go faster, need to work on both 1st half and

2nd half of the input at once

– How can you determine action of FSM on 2nd half

without knowing state reached after reading 1st

half?

Autumn 2011 CSE 311 12

b1b2...bn/2 bn/2+1 ...bn-1bn

what state?

• Idea: Figure out what happens in 2nd half for

all possible values of the middle state at once

Transition Function Composition

Transition table gives a function for each input symbol

Autumn 2011 CSE 311 13

State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

s0 s2 S3s1

111

0,1

0

0

0

s0 s2 s3s1

111

1

s0 s2 s3s1

0

0

0

0f0 f1

State reached on input b1...bn is

fbn
(fbn-1

...(fb2
(fb1

(start)))...)= fbn
∘ fbn-1

...∘ fb2
∘ fb1

(start)

Constant size 2-level

Boolean logic to

• convert input symbol to

bits for transition function

• compute composition of
two transition functions

Total depth 2 log2 n

and size ≈n

Autumn 2011 CSE 311 14

fb6
∘fb5

fb8
∘fb7

b8b7b5 b6

fb5
fb7

fb6
fb8

∘ ∘

∘

fb8
∘fb7

∘fb6
∘fb5

fb2
∘fb1

fb4
∘fb3

b1 b2 b3 b4

fb1
fb2

fb3
fb4

∘ ∘

∘

fb4
∘fb3

∘fb2
∘fb1

∘

fb8
∘fb7

∘fb6
∘fb5

∘fb4
∘fb3

∘fb2
∘fb1

b

fb

∘

f g

g∘f

Transition Function Composition

Carry-Look-Ahead Adder

Compute generate Gi= ai ∧ bi [1,1]

propagate Pi=ai ⊕ bi [0,1],[1,0]

These determine transition and output functions

– Carry Ci=Gi ∨	�Pi ∧	Ci-1) also written Ci=Gi+PiCi-1

– Sumi = Pi ⊕	Ci-1

Unwinding, we get

C0=G0 C1=G1+G0P1 C2=G2+G1P2+G0P1P2

C3=G3+G2P3+G1P2P3+G0P1P2P3

C4=G4+G3P4+G2P3P4+G1P2P3P4+G0P1P2P3P4

etc.

Autumn 2011 CSE 311 15

Carry-Look-Ahead Adder

Compute all generate Gi= ai ∧ bi [1,1]

propagate Pi=ai ⊕ bi [0,1],[1,0]

Then compute all:

C0=G0 C1=G1+G0P1 C2=G2+G1P2+G0P1P2

C3=G3+G2P3+G1P2P3+G0P1P2P3

C4=G4+G3P4+G2P3P4+G1P2P3P4+G0P1P2P3P4 etc.

Finally, use these to compute

Sum0 = P0 Sum1 = P1 ⊕	C0 Sum2 = P2 ⊕	C1

Sum3 = P3 ⊕	C2 Sum4 = P4 ⊕	C3 Sum5 = P5 ⊕	C4 etc

If all Ci are computed using 2-level logic, total depth is 4.

Autumn 2011 CSE 311 16

Adders using Composition

Carry-look-ahead circuit for carry Cn-1

has 2 + 3 +...+ n = (n+2)(n-1)/2 gates

– a lot more than ripple-carry adder circuit.

Composition: (G,P) followed by (G’,P’) gives the

same effect as (G’’,P’’) where

– G’’= G’ ∨	(G ∧	P’) and P’’= P’ ∧	P also written as

G’’= G’+G P’ and P’’= P’P

Autumn 2011 CSE 311 17

Composition gives an alternative approach

Adders using Composition

Composition: (G,P) followed by (G’,P’) gives the

same effect as (G’’,P’’) where

– G’’= G’ ∨	(G ∧	P’) and P’’= P’ ∧	P also written as

G’’= G’+G P’ and P’’= P’P

Use this for the circuit component

in transition function composition tree

– Computes Cn-1 in depth 2 log2 n and size ≈n

• But we need all of C0, C1, ..., Cn-1 not just Cn-1

Autumn 2011 CSE 311 18

∘

Constant size 2-level

Boolean logic to

• convert input symbol to

bits for transition function

• compute composition of
two transition functions

Total depth 2 log2 n

and size ≈n

Autumn 2011 CSE 311 19

fb5
∘fb4

fb7
∘fb6

b7b6b4 b5

fb4
fb6

fb5
fb7

∘ ∘

∘

fb7
∘fb6

∘fb5
∘fb4

fb1
∘fb0

fb3
∘fb2

b0 b1 b2 b3

fb0
fb1

fb2
fb3

∘ ∘

∘

fb3
∘fb2

∘fb1
∘fb0

∘

fb7
∘fb6

∘fb5
∘fb4

∘fb3
∘fb2

∘fb1
∘fb0

b

fb

∘

f g

g∘f

Transition Function Composition
Computing all the values

• We need to compute all of

fb7
∘fb6

∘fb5
∘fb4

∘fb3
∘fb2

∘fb1
∘fb0

Already computed

fb6
∘fb5

∘fb4
∘fb3

∘fb2
∘fb1

∘fb0
=fb6

∘(fb5
∘fb4

)∘(fb3
∘fb2

∘fb1
∘fb0

)

fb5
∘fb4

∘fb3
∘fb2

∘fb1
∘fb0

= (fb5
∘fb4

) ∘ (fb3
∘fb2

∘fb1
∘fb0

)

fb4
∘fb3

∘fb2
∘fb1

∘fb0
= fb4

∘ (fb3
∘fb2

∘fb1
∘fb0

)

fb3
∘fb2

∘fb1
∘fb0

Already computed

fb2
∘fb1

∘fb0
= fb2

∘ (fb1
∘fb0

)

fb1
∘fb0

Already computed

fb0
Already computed

Autumn 2011 CSE 311 20

Parallel Prefix Circuit

• The general way of doing this efficiently is

called a parallel prefix circuit

– Designed and analyzed by Michael Fischer and

Richard Ladner (University of Washington)

• Uses the adder composition operation that

sets G’’= G’+G P’ and P’’= P’P

– we just show it for the part for computing P’’

which is a Parallel Prefix AND Circuit

Autumn 2011 CSE 311 21

Parallel Prefix
n/2 inputs

The Parallel Prefix AND Circuit

Parallel Prefix
n/2 inputs

P1

Pn/2

Pn/2+1

Pn

Parallel Prefix

n inputs

P1

P1P2...Pn/2

P1P2...Pn/2Pn/2+1

P1P2...Pn

n/2 AND gates
per level

log2n levels

P1P2

Parallel Prefix Adder

• Circuit depth 2 log2 n

• Circuit size 4 n log2 n

• Actual adder circuits in hardware use
combinations of these ideas and more but this
gives the basics

• Nice overview of adder circuits at
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html

Autumn 2011 CSE 311 23

