CSE 311 Foundations of Computing I

Lecture 24
FSM Limits, Pattern Matching
Autumn 2011

Autumn 2011 CSE 311

Announcements

- · Reading assignments
 - 7th Edition, Section 13.4
 - 6th Edition, Section 12.4
 - -5th Edition, Section 11.4

umn 2011 CSE 3:

Last lecture highlights

• NFAs from Regular Expressions

(01 ∪1)*0

Autumn 2011 CSE 311

Last lecture highlights

• "Subset construction": NFA to DFA

What can Finite State Machines do?

- We've seen how we can get DFAs to recognize all regular languages
- What about some other languages we can generate with CFGs?
 - $-\{0^{n}1^{n}: n\geq 0\}$?
 - Binary Palindromes?
 - Strings of Balanced Parentheses?

Autumn 2011 CSE 211

$A=\{0^n1^n : n \ge 0\}$ cannot be recognized by any DFA

Consider the infinite set of strings $S=\{\lambda, 0, 00, 000, 0000, ...\}$

Claim: No two strings in S can end at the same state of any DFA for A, so no such DFA can exist

Proof: Suppose n≠m and 0ⁿ and 0^m end at the same state p.

Since 0ⁿ1ⁿ is in A, following 1ⁿ after state p must lead to a final state.

But then the DFA would accept 0^m1ⁿ which is a contradiction

Autumn 2011 CSE 311 6

The set B of binary palindromes cannot be recognized by any DFA

Consider the infinite set of strings $S={\lambda, 0, 00, 000, 0000, ...}$

Claim: No two strings in S can end at the same state of any DFA for B, so no such DFA can exist

Proof: Suppose n≠m and 0ⁿ and 0^m end at the same

state p.

Since 0^n10^n is in B, following 10^n after state p

must lead to a final state.

But then the DFA would accept $0^{m}10^{n}$

which is a contradiction

Autumn 2011 CSE 311

The set P of strings of balanced parentheses cannot be recognized by any DFA

tumn 2011 CSE 31

Pattern Matching

- Given
- a string, s, of n characters
- a pattern, \mathbf{p} , of \mathbf{m} characters
- usually $\mathbf{m} << \mathbf{n}$
- Find
 - all occurrences of the pattern \boldsymbol{p} in the string \boldsymbol{s}
- Obvious algorithm:
 - try to see if \boldsymbol{p} matches at each of the positions in \boldsymbol{s}
 - stop at a failed match and try the next position

9

Pattern $\mathbf{p} = x y x y y x y x y x x$

10

12

Better Pattern Matching via Finite Automata

- Build a DFA for the pattern (preprocessing) of size O(m)
 - Keep track of the 'longest match currently active'
 - − The DFA will have only **m**+1 states
- Run the DFA on the string **n** steps
- Obvious construction method for DFA will be O(m²) but can be done in O(m) time.
- Total O(m+n) time

25

Building a DFA for the pattern

Pattern **p**=x y x y y x y x y x x

 $\searrow \circ_{\times} \rightarrow \circ_{\wedge} \rightarrow \circ_{\times} \rightarrow \circ_{\wedge} \rightarrow \circ_{\times} \rightarrow \circ_$

26

Preprocessing the pattern

Pattern \mathbf{p} =x y x y y x y x y x x

27

Preprocessing the pattern

Pattern \mathbf{p} =x y x y y x y x y x x

28

Preprocessing the pattern

Pattern $\mathbf{p} = x y x y y x y x y x x$

29

Preprocessing the pattern

Pattern **p**=x y x y y x y x y x x

30

Generalizing

- Can search for arbitrary combinations of patterns
 - Not just a single pattern
 - Build NFA for pattern then convert to DFA 'on the fly'.
 - Compare DFA constructed above with subset construction for the obvious NFA.

31

A Quick Note...

- On how to convert NFAs and DFAs to equivalent regular expressions...
- · We've already seen
 - DFAs and NFAs recognize the same languages
 - NFAs (and therefore DFAs) recognize any language given by a regular expression
- This completes the equivalence of DFAs and regular expressions

Autumn 2011

CSE 311

Generalized NFAs

- · Like NFAs but allow
 - Parallel edges
 - Regular Expressions as edge labels
 - NFAs already have edges labeled $\pmb{\lambda}$ or $\pmb{\sigma}$
- An edge labeled by A can be followed by reading a string of input chars that is in the language represented by A
- A string x is accepted iff there is a path from start to final state labeled by a regular expression whose language contains x

Autumn 2011

CSE 311

Starting from NFA

· Add new start state and final state

• Then eliminate original states one by one, keeping the same language, until it looks like:

• Final regular expression will be A

nn 2011

Only two simplification rules:

• Rule 1: For any two states q₁ and q₂ with parallel edges (possibly q₁=q₂), replace

 Rule 2: Eliminate non-start/final state q₃ by replacing all

for every pair of states q_1 , q_2 (even if $q_1=q_2$)

Autumn 201

CSE 311

26