CSE 311 Foundations of
Computing |

Lecture 24
FSM Limits, Pattern Matching
Autumn 2011

Autumn 201 CSE 311

Announcements

* Reading assighments
— 7th Edition, Section 13.4
— 6t Edition, Section 12.4
— 5% Edition, Section 11.4

Autumn 201 CSE 311

Last lecture highlights

* NFAs from Regular Expressions

(01 U1)*0

Last lecture highlights

* “Subset construction”: NFA to DFA

1

0 ‘
NFAO,1

What can Finite State Machines do?

* We’ve seen how we can get DFAs to recognize
all regular languages

* What about some other languages we can
generate with CFGs?
—{0"":n>01}?
— Binary Palindromes?
— Strings of Balanced Parentheses?

Autumn 201 CSE 311

A={0"1" : n20} cannot be recognized
by any DFA
Consider the infinite set of strings
s={, 0, 00, 000, 0000, ...}
Claim: No two strings in S can end at the same

state of any DFA for A, so no such DFA can exist

Proof: Suppose n#m and 0" and O™ end at the same
state p.

Since 0"1"is in A, following 1" after state p
must lead to a final state.

But then the DFA would accept 0™1"
which is a contradiction

Autumn 201 CSE 311

The set B of binary palindromes
cannot be recognized by any DFA

Consider the infinite set of strings
S={A, 0, 00, 000, 0000, ...}
Claim: No two strings in S can end at the same
state of any DFA for B, so no such DFA can exist

Proof: Suppose nm and 0" and 0™ end at the same
state p.

Since 0"10" is in B, following 10" after state p
must lead to a final state.

But then the DFA would accept 0™10"
which is a contradiction

Autumn 201 CSE 311

The set P of strings of balanced parentheses
cannot be recognized by any DFA

Autumn 201 CSE 311

Pattern Matching

* Given
— astring, s, of n characters
— a pattern, p, of m characters
— usually m<<n
* Find
— all occurrences of the pattern p in the string s

¢ Obvious algorithm:
— try to see if p matches at each of the positionsin s
* stop at a failed match and try the next position

StingS=XYyXXYXYXYYXYXYXYyXyXyXX
Patternp=xyXyyXxyXxyxXx

String S =Xy XXYXYXYYXYXYyXyyXyXyXXx
XYXYYXYXYXX

String S =Xy XXYXYXYYXYXYyXyyXyXyXxXx
Xyxy
XYXYYXYXYXX

String S =XYXXYXYXYYXYyXYyXyyXyXyXxXx
Xyxy
X

XYXYYXYXYXX

String S =XYXXYXYXYYXYXYyXyyXyXyXxXx
Xyxy
X

Xy
XYXYYXYXYXX

String S =Xy XXYXYyXYYXYXYyXYYyXYyXyXX
XyXy

y
YYXYXYyXX

String S =Xy XXYXYXYYXYXYXYYXYXYXX
Xy Xy
X
Xy
Xyxyy
X
XYXYYXYXyXX

String S =XYXXYXYXYYXYXYyXyyXyXyXxXx
Xyxy
X

Xy
Xyxyy
X

XYXYYXYXYXX
XYXYYXYXYXX

String S =XYXXYXYXYYXYXYyXyyXyXyXxXx
Xyxy
X

Xy
Xyxyy
X

XYXYYXYXYXX
X
XYXYYXYXYXX

String S =XYXXYXYXYYXYyXYyXyyXyXyXxXx
Xyxy
X

Xy
Xyxyy
X

XYXYYXYXYXX
X

Xy X
XYXYYXYXYXX

String S =XYXXYXYXYYXYXYyXyyXyXyXxXx
Xyxy
X

Xy
Xyxyy
X

XYXYYXYXYXX
X
XYy X

X
XYXYYXYXYXX

20

String S =Xy XXYXYyXYYXYXYyXYYyXYyXyXX
XyXy
X
Xy
Xyxyy
X
XYXYYXYXYXX
X

Xy X
X
X

XYXYYXYXYXX

21

String S =Xy XXYXYyXYYXYXYyXYYyXYyXyXX
XyXy
X
Xy
Xyxyy
X
XYXYYXYXYXX
X

Xy X
X
X
Xyxyy
XYXYYXYXYXX

22

StiNg S =Xy XXYXYXYYXYXYyXyyXyXyXX

XyXy
X
Xy
XyXyy
X
XYXYYXYXYyXX
Worst-case time X
O(mn) XXX
X
Xyxyy
X

XYXYYXYXYXX

23

StiNg s =Xy XXYXYXYYXYXYyXyyXyXyXxX
XyXy

@ Lots of wasted work
Xéxj

XYXYYXYyXyXX

(

XYXYYXYXYXX

24

Better Pattern Matching via Finite Automata

* Build a DFA for the pattern (preprocessing) of size
O(m)
— Keep track of the ‘longest match currently active’
— The DFA will have only m+1 states

Run the DFA on the string n steps

Obvious construction method for DFA will be O(m?)
but can be done in O(m) time.

Total O(m+n) time

25

Preprocessing the pattern

Pattern p=xy Xy y Xy X y X X

®

27

Building a DFA for the pattern

Pattern p=xy xy y Xy x y x x

e v X X y X X
V)
26
Preprocessing the pattern
Pattern p=xy Xy y Xy X y X X
X
X
SYx v _f v X v X v X X @

28

Preprocessing the pattern

Pattern p=xy xy y Xy x y X x

29

Preprocessing the pattern

Pattern p=xy xy y Xy x y x x

Generalizing

* Can search for arbitrary combinations of patterns
— Not just a single pattern
— Build NFA for pattern then convert to DFA ‘on the fly’.

* Compare DFA constructed above with subset
construction for the obvious NFA.

A Quick Note...

On how to convert NFAs and DFAs to
equivalent regular expressions...

We’ve already seen
— DFAs and NFAs recognize the same languages

— NFAs (and therefore DFAs) recognize any language
given by a regular expression

This completes the equivalence of DFAs and
regular expressions

utumn 201 CSE 311

Generalized NFAs

* Like NFAs but allow
— Parallel edges
— Regular Expressions as edge labels

* NFAs already have edges labeled A or a

* An edge labeled by A can be followed by reading a
string of input chars that is in the language
represented by A

* Astring x is accepted iff there is a path from start to
final state labeled by a regular expression whose
language contains x

Starting from NFA

Add new start state and final state

+0—A L0 L

_}‘O
Then eliminate original states one by one,
keeping the same language, until it looks like:

+0 A o)

Final regular expression will be A

Only two simplification rules:

* Rule 1: For any two states g, and g, with

parallel edges (possibly q,=q,), replace
A

o, o

* Rule 2: Eliminate non-start/final state q, by
replacing all

O 2@ v @@

for every pair of states q,, g, (even if q,=q,)

Autumn 201 CSE 311

