CSE 311 Foundations of
Computing |

Lecture 23

NFAs, Regular Expressions, and
Equivalence with DFAs

Autumn 2011

Announcements

* Reading assignments
— 7th Edition, Sections 13.3 and 13.4
— 6t Edition, Section 12.3 and 12.4
— 5t Edition, Section 11.3 and 11.4

* New homework out later today won’t be due
until Friday Dec 2.

Last lecture highlights

Finite State Machines with output at states

State minimization

Last lecture highlights

Lemma: The language recognized by a DFA is the set of
strings x that label some path from its start state to one
of its final states

ofiogioio

0,1

Nondeterministic Finite Automaton (NFA)

* Graph with start state, final states, edges labeled by
symbols (like DFA) but

— Not required to have exactly 1 edge out of each state
labeled by each symbol - can have 0 or >1

— Also can have edges labeled by empty string A

« Definition: The language recognized by an NFA is the
set of strings x that label some path from its start
state to one of its final states

*‘—m =)
O o
01 0,1

Autumn 201 CSE 311

Three ways of thinking about NFAs

* Qutside observer: Is there a path labeled by x
from the start state to some final state?

* Perfect guesser: The NFA has input x and
whenever there is a choice of what to do it
magically guesses a good one (if one exists)

* Parallel exploration: The NFA computation
runs all possible computations on x step-by-
step at the same time in parallel

Autumn 201 CSE 311




Design an NFA to recognize the set of binary
strings that contain 111 or have an even # of 1’s

Autumn 201 CSE 311

NFAs and Regular Expressions

Theorem: For any set of strings (language) A
described by a regular expression, there is an
NFA that recognizes A.

Proof idea: Structural induction based on the
recursive definition of regular expressions...

Note: One can also find a regular expression to describe the
language recognized by any NFA but we won’t prove that fact

Autumn 201 CSE 311

Regular expressions over X

* Basis:

— @, A are regular expressions

—ais a regular expression foranya € X
* Recursive step:

— If A and B are regular expressions then so are:

* (AU B)
* (AB)
o A*
Basis
* Case @: e
e Case \: e
* Casea: a
+O0—0

Basis

¢ Case &:

e Case A:

* Casea:

Inductive Hypothesis

* Suppose that for some regular expressions A
and B there exist NFAs N, and N, such that
N, recognizes the language given by A and
Ng recognizes the language given by B

O
.)O "’O O
O o)

Na Ng

Autumn 201 CSE 311




Inductive Step

* Case (A UB):
O

Na

Ng

Inductive Step

* Case (A UB):

(@)
=O)
3 0
N
A o
=0
O
wutumn 2011 CSE 311 NB

Inductive Step

Inductive Step

e Case (AB):
O O
Na Ng
Inductive Step
e Case A*

¢ Case (AB):
_i (0]
»O »O
1A o
Na Ng
Inductive Step
e Case A*

EN
u{b
_.O.__
QN




NFAs and DFAs

Every DFA is an NFA
— DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that
recognizes exactly the same language

Conversion of NFAs to a DFAs

* Proof Idea:

— The DFA keeps track of ALL the states that the part
of the input string read so far can reach in the NFA

— There will be one state in the DFA for each subset
of states of the NFA that can be reached by some
string

Conversion of NFAs to a DFAs

* New start state for DFA

— The set of all states reachable from the start state
of the NFA using only edges labeled A

NFA DFA

Conversion of NFAs to a DFAs

* For each state of the DFA corresponding to a set S of
states of the NFA and each symbol s
— Add an edge labeled s to state corresponding to T, the set
of states of the NFA reached by
 starting from some state in S, then
« following one edge labeled by s, and
« then following some number of edges labeled by A
— T will be @ if no edges from S labeled s exist

Coef> 1 Cedeg >

Conversion of NFAs to a DFAs

* Final states for the DFA

— All states whose set contain some final state of the
NFA

NFA DFA

Example: NFA to DFA

DFA




Example: NFA to DFA

DFA

Example: NFA to DFA

DFA

Example: NFA to DFA

DFA

Example: NFA to DFA

DFA

Example: NFA to DFA

DFA

Example: NFA to DFA




Example: NFA to DFA

Exponential blow-up in simulating
nondeterminism
* In general the DFA might need a state for every
subset of states of the NFA
— Power set of the set of states of the NFA
— n-state NFA yields DFA with at most 2" states

— We saw an example where roughly 2" is necessary
* Is the 10t char from the end a 1?

e The famous “P=NP?” question asks whether a
similar blow-up is always necessary to get rid of
nondeterminism for polynomial-time algorithms




