

Announcements

- Reading assignments
$-7^{\text {th }}$ Edition, Sections 13.3 and 13.4
$-6^{\text {th }}$ Edition, Section 12.3 and 12.4
$-5^{\text {th }}$ Edition, Section 11.3 and 11.4

Autumn 2011
CSE 311

State Minimization

- Many different FSMs (DFAs) for the same problem
- Take a given FSM and try to reduce its state set by combining states
- Algorithm will always produce the unique minimal equivalent machine (up to renaming of states) but we won't prove this

State minimization algorithm

1. Put states into groups based on their outputs (or whether they are final states or not)
2. Repeat the following until no change happens
a. If there is a symbol s so that not all states in a group G agree on which group s leads to, split G into smaller groups based on which group the states go to on s

Nondeterministic Finite Automaton (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol - can have 0 or >1
- Also can have edges labeled by empty string $\boldsymbol{\lambda}$
- Definition: x is in the language recognized by an NFA iff x labels a path from the start state to some final state

Autumn 2011
CSE 311

Another way to look at DFAs

Definition: The label of a path in a DFA is the concatenation of all the labels on its edges in order

Lemma: x is in the language recognized by a DFA iff x labels a path from the start state to some final state

Autumn 2011

Design an NFA to recognize the set of binary strings that contain 111 or have an even \# of 1's

