CSE 311 Foundations of Computing I

Lecture 21
Finite State Machines
Autumn 2011

Autumn 2011 CSE 311

Announcements

- · Reading assignments
 - 7th Edition, Sections 13.3 and 13.4
 - 6th Edition, Section 12.3 and 12.4
 - -5th Edition, Section 11.3 and 11.4
- · HW 8 is on-line

utumn 2011 CSE 311

Last lecture highlights

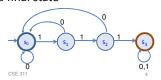
Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in R^n$

Let R be a relation on a set A. The connectivity relation R* consists of the pairs (a,b) such that there is a path from a to b in R

Transitive-Reflexive closure: Add the minimum possible number of edges to make the relation transitive and reflexive

The transitive-reflexive closure of a relation R is the connectivity relation R^{\star}

Finite state machines


States

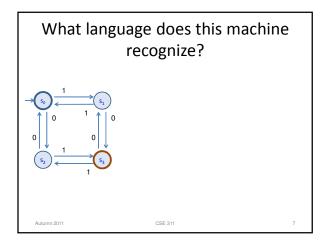
Transitions on inputs

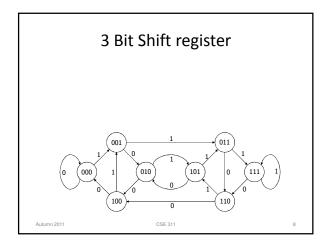
Start state and final states

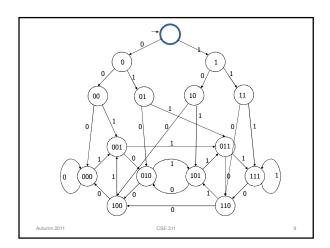
The language recognized by a machine is the set of strings that reach a final state

State	0	1	
s _o	s _o	S ₁	
s ₁	s _o	S ₂	
S ₂	s _o	s ₃	
S ₃	S ₃	S ₃	
Autumn 2011			

Applications of Finite State Machines (a.k.a. Finite Automata)

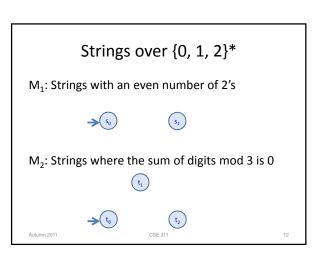

- Implementation of regular expression matching in programs like **grep**
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cachecoherence protocols
 - Each agent runs its own FSM
- Design specifications for reactive systems
 - Components are communicating FSMs

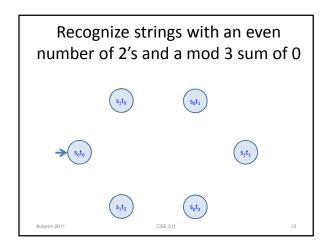

Nuturn 2011

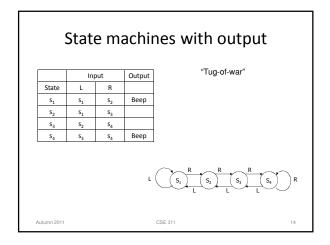

Applications of Finite State Machines (a.k.a. Finite Automata)

- · Formal verification of systems
 - Is an unsafe state reachable?
- · Computer games
 - FSMs provide worlds to explore
- Minimization algorithms for FSMs can be extended to more general models used in
 - Text prediction
 - Speech recognition

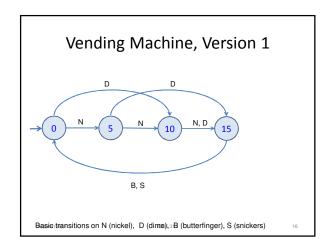
umn 2011 CSE 311 6




Design a DFA that accepts strings with a 1 three positions from the end


CSE 311

Autumn 2011


How does the size of a DFA to recognize "10th character is a 1" compare with the size of a DFA to recognize "10th character from the end is 1"?

