

Announcements

- Reading assignments
$-7^{\text {th }}$ Edition, Sections 9.3 and 13.3
$-6^{\text {th }}$ Edition, Section 8.3 and 12.3
$-5^{\text {th }}$ Edition, Section 7.3 and 11.3

A binary relation from A to B is a subset of $A \times B$
$S^{\circ} R=\{(a, c) \mid \exists b$ such that $(a, b) \in R$ and $(b, c) \in S\}$

$$
R^{1}=R ; \quad R^{n+1}=R^{n} \circ R
$$

Autumn 2011
CSE 311

Relational databases			
Student_Name	ID_Number	Major	GPA
Knuth	328012098	CS	4.00
Von Neuman	481080220	CS	3.78
Von Neuman	481080220	Mathematics	3.78
Russell	238082388	Philosophy	3.85
Einstein	238001920	Physics	2.11
Newton	1727017	Mathematics	3.61
Karp	348882811	CS	3.98
Newton	1727017	Physics	3.61
Bernoulli	2921938	Mathematics	3.21
Bernoulli	2921939	Mathematics	3.54

Alternate Approach				
Student_ID	Name	GPA	Student_ID	Major
328012098	Knuth	4.00	328012098	CS
481080220	Von Neuman	3.78	481080220	CS
238082388	Russell	3.85	481080220	Mathematics
238001920	Einstein	2.11	238082388	Philosophy
1727017	Newton	3.61	238001920	Physics
348882811	Karp	3.98	1727017	Mathematics
2921938	Bernoulli	3.21	348882811	CS
2921939	Bernoulli	3.54	1727017	Physics
			2921938	Mathematics
			2921939	Mathematics

Representation of relations

Directed Graph Representation (Digraph)
$\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}$

Paths in relations
Let R be a relation on a set A . There is a path of length n from a to b if and only if $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}^{n}$

Connectivity relation

Let R be a relation on a set A. The connectivity relation R^{*} consists of the pairs (a, b) such that there is a path from a to b in R.

$$
R^{*}=\bigcup_{k=0}^{\infty} R^{k}
$$

Finite state machines

States

Transitions on inputs
Start state and finals states
The language recognized by a machine is the set of strings that reach a final state

State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

Transitive-Reflexive Closure

Add the minimum possible number of edges to make the relation transitive and reflexive

The transitive-reflexive closure of a relation R is the connectivity relation R^{*}
Autumn 2011

What language does this machine recognize?

