
CSE 311 Foundations of
Computing I

Lecture 18
Recursive Definitions: Context-Free

Grammars and Languages
Autumn 2011

Autumn 2011 CSE 311 1

Announcements

• Reading assignments
– 7th Edition, pp. 878-880 and pp. 851-855

– 6th Edition, pp. 817-819 and pp. 789-793

– 5th Edition, pp. 766 and pp. 743-748

• For Monday, November 14
– 7th Edition, Section 9.1 and pp. 594-601

– 6th Edition, Section 8.1 and pp. 541-548

– 5th Edition, Section 7.1 and pp. 493-500

• No class Friday, November 11

Autumn 2011 CSE 311 2

Highlights from last lecture

• Regular expressions over

• Basis:
– , are regular expressions

– a is a regular expression for any a

• Recursive step:
– If A and B are regular expressions then so are:

• (A B)

• (AB)

• A*

Each regular expression is a “pattern”

• matches the empty string

• a matches the one character string a

• (A B) matches all strings that either A
matches or B matches (or both)

• (AB) matches all strings that have a first part
that A matches followed by a second part that
B matches

• A* matches all strings that have any number of
strings (even 0) that A matches, one after
another

Autumn 2011 CSE 311 4

Examples
• 0*

• 0*1*

• (0 1)*

• (0*1*)*

• (0 1)* 0110 (0 1)*

• (0 1)* (0110 100)(0 1)*

Autumn 2011 CSE 311 5

Regular expressions in practice

• Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

• Used in grep, a program that does pattern matching
searches in UNIX/LINUX

• Pattern matching using regular expressions is an essential
feature of hypertext scripting language PHP used for web
programming

– Also in text processing programming language Perl

Autumn 2011 CSE 311 6

Regular Expressions in PHP
• int preg_match (string $pattern , string $subject,...)

• $pattern syntax:
[01] a 0 or a 1 ^ start of string $ end of string

[0-9] any single digit \. period \, comma \- minus

. any single character

ab a followed by b (AB)

(a|b) a or b (A B)
a? zero or one of a (A)
a* zero or more of a A*

a+ one or more of a AA*

• e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

 General form of decimal number e.g. 9.12 or -9,8 (Europe)

Autumn 2011 CSE 311 7

More examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

Autumn 2011 CSE 311 8

Regular expressions can’t specify
everything we might want

• Even some easy things like palindromes

• More complicated structures in
programming languages
– Matched parentheses

– Properly formed arithmetic expressions

– Etc.

 Autumn 2011 CSE 311 9

Context Free Grammars
• A Context-Free Grammar (CFG) is given by a

finite set of substitution rules involving

– A finite set V of variables that can be replaced

– Alphabet of terminal symbols that can’t be
replaced

– One variable, usually S, is called the start symbol

• The rules involving a variable A are written as

A w1 | w2 | ... | wk where each wi is a string of
variables and terminals – that is wi ∈ (V)*

Autumn 2011 CSE 311 10

How Context-Free Grammars generate
strings

• Begin with start symbol S

• If there is some variable A in the current string
you can replace it by one of the w’s in the
rules for A

–Write this as xAy ⇒ xwy

–Repeat until no variables left

• The set of strings the CFG generates are all
strings produced in this way that have no
variables

Autumn 2011 CSE 311 11

Sample Context-Free Grammars

• Example: S 0S0 | 1S1 | 0 | 1 |

• Example: S 0S | S1 |

Autumn 2011 CSE 311 12

Sample Context-Free Grammars

• Grammar for {0n1n : n≥ 0} all strings with
same # of 0’s and 1’s with all 0’s before 1’s.

• Example: S (S) | SS |

Autumn 2011 CSE 311 13

Simple Arithmetic Expressions

E E+E | E*E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 | 5 |
 6 | 7 | 8 | 9

Generate (2*x) + y

Generate x+y*z in two fundamentally different ways

 Autumn 2011 CSE 311 14

Context-Free Grammars and
recursively-defined sets of strings

• A CFG with the start symbol S as its only
variable recursively defines the set of strings
of terminals that S can generate

• A CFG with more than one variable is a
simultaneous recursive definition of the sets
of strings generated by each of its variables

– Sometimes necessary to use more than one

Autumn 2011 CSE 311 15

Building in Precedence in Simple
Arithmetic Expressions

• E – expression (start symbol)

• T – term F – factor I – identifier N - number

E T | E+T

T F | F*T

F (E) | I | N

I x | y | z

N 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Autumn 2011 CSE 311 16

Another name for CFGs

• BNF (Backus-Naur Form) grammars

– Originally used to define programming languages

– Variables denoted by long names in angle
brackets, e.g.

• <identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>

• ::= used instead of

Autumn 2011 CSE 311 17

BNF for C

Autumn 2011 CSE 311 18

statement:

 ((identifier | "case" constant-expression | "default") ":")*

 (expression? ";" |

 block |

 "if" "(" expression ")" statement |

 "if" "(" expression ")" statement "else" statement |

 "switch" "(" expression ")" statement |

 "while" "(" expression ")" statement |

 "do" statement "while" "(" expression ")" ";" |

 "for" "(" expression? ";" expression? ";" expression? ")" statement |

 "goto" identifier ";" |

 "continue" ";" |

 "break" ";" |

 "return" expression? ";"

)

block: "{" declaration* statement* "}"

logical-OR-expression:

 logical-AND-expression ("||" logical-AND-expression)*

logical-AND-expression:

 inclusive-OR-expression ("&&" inclusive-OR-expression)*

inclusive-OR-expression:

 exclusive-OR-expression ("|" exclusive-OR-expression)*

Parse Trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>

<noun phrase>::=<article><adjective><noun>

<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase>

Parse:

 The yellow duck squeaked loudly

 The red truck hit a parked car

Autumn 2011 CSE 311 19

