CSE 311 Foundations of Computing I

Lecture 16
Functions on Recursively Defined Sets and Structural Induction Autumn 2011

Announcements

- Reading assignments
- Today:
- $5.37^{\text {th }}$ Edition
- $4.36^{\text {th }}$ Edition
- $3.45^{\text {th }}$ Edition (not all there)
- Midterm Friday, Nov 4
- Closed book, closed notes, no calculators, cell phones, etc.
- Sample midterm questions available on website
- Extra office hours Thursday
- Richard Anderson: 4:30-5:30 in room CSE 503
- Paul Beame: 3:30-4:30 in room CSE 403

Autumn 2011

Strings

- An alphabet Σ is any finite set of characters.
- The set Σ^{*} of strings over the alphabet Σ is defined by
- Basis: $\lambda \in \Sigma^{*}$ (λ is the empty string)
- Recursive: if $w \in \Sigma^{*}, x \in \Sigma$, then $w x \in \Sigma^{*}$
- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S
- Structural Induction:

1. By induction we will show that $\mathrm{P}(\mathrm{x})$ is true for every x in S

Base Case: Show that P is true for all elements of S mentioned in the

Highlights from last lecture

- Recursively defined sets

3. Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step
4. Inductive Step: Prove that P holds for each new element constructed in the Recursive step using the elements mentioned in the Inductive Hypothesis
5. Conclusion: Result follows by induction

$\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all strings x and y
Autumn2011

Rooted Binary trees

- Basis: - is a rooted binary tree
- Recursive Step: If binary trees then so is:

For every rooted binary tree T $\operatorname{size}(T) \leq 2^{\text {height }(T)+1}-1$

