CSE 311 Foundations of
Computing |

Lecture 16

Functions on Recursively Defined Sets
and Structural Induction

Autumn 2011

Announcements

* Reading assignments

— Today:
* 53 7t Edition
* 4.3 6" Edition
* 3.4 5thEdition (not all there)

* Midterm Friday, Nov 4
— Closed book, closed notes, no calculators, cell phones,
etc.
— Sample midterm questions available on website
— Extra office hours Thursday
* Richard Anderson: 4:30-5:30 in room CSE 503
* Paul Beame: 3:30-4:30 in room CSE 403

Highlights from last lecture

* Recursively defined sets
— Basis step: Some specific elements are in S

— Recursive step: Given some existing named elements in S some new
objects constructed from these named elements are also in S

* Structural Induction:

1. By induction we will show that P(x) is true for every xin S
2. Base Case: Show that P is true for all elements of S mentioned in the
Basis step

3. Inductive Hypothesis: Assume that P is true for some arbitrary values of
each of the existing named elements mentioned in the Recursive step

4. Inductive Step: Prove that P holds for each new element constructed in
the Recursive step using the elements mentioned in the Inductive
Hypothesis

5. Conclusion: Result follows by induction

Strings

* An alphabet ¥ is any finite set of characters.
* The set X* of strings over the alphabet X is
defined by
—Basis: A € * (A is the empty string)
— Recursive: ifw € 2%, x € X, thenwx € 2*

Palindromes

* Palindromes are strings that are the same
backwards and forwards
* Basis: A isa palindromeandanya €Xisa
palindrome
* Recursive step: If p is a palindrome then apa is
a palindrome for everya € X

Function definitions on recursively
defined sets

len (1) =0;
len (wa) =1+ len(w); forw e X*, aec X

Reversal:
AR= A
(wa)R=awRforw e Z*,a e X

Concatenation:
weA=wforweX*
Wy e Woa = (W, « Wy)a forw,, w, € *,a € X

len(xey)=len(x)+len(y) for all strings x and y

Rooted Binary trees

* Basis: e isarooted binary tree
e

* Recursive Step: If i "‘-._are rooted

binary trees
then sois:

.............

Functions defined on rooted binary trees

* size(e®)=1

e size(®, %) = L+size(T,)+size(T,)

......... $.20

* height(e)=0

For every rooted binary tree T
SiZE(T) < 2height(T)+1 -1

