

## Highlights from last lecture

- Recursively defined sets
  - Basis step: Some specific elements are in S
  - Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S
- Structural Induction:

Autumn 2011

- 1. By induction we will show that P(x) is true for every x in S
- 2. Base Case: Show that P is true for all elements of S mentioned in the Basis step
- Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the *Recursive step* Inductive Step: Prove that P holds for each new element constructed in
- Inductive Step: Prove that P holds for each new element constructed in the *Recursive step* using the elements mentioned in the Inductive Hypothesis
- 5. Conclusion: Result follows by induction

## Strings

- An *alphabet*  $\Sigma$  is any finite set of characters.
- The set Σ\* of strings over the alphabet Σ is defined by
  - Basis:  $\lambda \in \Sigma^*$  ( $\lambda$  is the empty string)
  - Recursive: if  $w \in \Sigma^*$ ,  $x \in \Sigma$ , then  $wx \in \Sigma^*$

## Palindromes

- Palindromes are strings that are the same backwards and forwards
- Basis:  $\lambda$  is a palindrome and any  $a \in \Sigma$  is a palindrome
- Recursive step: If p is a palindrome then apa is a palindrome for every  $a \in \Sigma$

CSE 311

## Function definitions on recursively defined sets

```
len (\lambda) = 0;
len (wa) = 1 + len(w); for w \in \Sigma^*, a \in \Sigma
```

Reversal:  $\lambda^{R} = \lambda$ (wa)<sup>R</sup> = aw<sup>R</sup> for  $w \in \Sigma^{*}$ ,  $a \in \Sigma$ 

 $\begin{array}{l} \text{Concatenation:}\\ w \bullet \lambda = w \text{ for } w \in \Sigma^*\\ w_1 \bullet w_2 a = (w_1 \bullet w_2) a \text{ for } w_1, w_2 \in \Sigma^*, a \in \Sigma \end{array}$ 







