CSE 311 Foundations of Computing I

Lecture 15
Recursive Definitions and Structural Induction
Autumn 2011

Autumn 2011

Announcements

- Reading assignments
- Today:
- $5.37^{\text {th }}$ Edition
- $4.36^{\text {th }}$ Edition
- $3.45^{\text {th }}$ Edition (not all there)
- Midterm Friday, Nov 4
- Closed book, closed notes
- Sample midterm questions available on website
- Extra office hours Thursday, times TBA

Autumn 2011
CSE 311

Fibonacci Numbers

- $f_{0}=0 ; f_{1}=1 ; f_{n}=f_{n-1}+f_{n-2}$
- Strong Induction

P(0)
$\forall k((P(0) \wedge P(1) \wedge P(2) \wedge \ldots \wedge P(k)) \rightarrow P(k+1))$
$\therefore \forall \mathrm{nP}(\mathrm{n})$

- Strong Induction proof layout:

1. By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis: Assume that for some arbitrary integer
$k \geq 0, P(j)$ is true for every j from 0 to k
4. Inductive Step: Prove that $P(k+1)$ is true using Inductive Hypothesis that $P(j)$ is true for all values $\leq k$
5. Conclusion: Result follows by induction

Bounding the Fibonacci Numbers

- Theorem: $2^{\mathrm{n} / 2-1} \leq \mathrm{f}_{\mathrm{n}}<2^{\mathrm{n}}$ for $\mathrm{n} \geq 2$

Fibonacci numbers and the running time of Euclid's algorithm

- Theorem: Suppose that Euclid's algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a>b$, then $a \geq \mathrm{f}_{\mathrm{n}+1}$ so $a \geq 2^{(n-1) / 2}$
- \# of steps at most twice \# of bits of a
- Set $r_{n+1}=a, r_{n}=b$ then Euclid's alg. computes
$r_{n+1}=q_{n} r_{n}+r_{n-1} \quad$ each quotient $q_{i} \geq 1$
$r_{n}=q_{n-1} r_{n-1}+r_{n-2} \quad r_{1} \geq 1$
-••
$r_{3}=q_{2} r_{2}+r_{1}$
$r_{2}=q_{1} r_{1}$

Recursive Definitions of Sets

- Recursive definition
- Basis step: $0 \in S$
- Recursive step: if $x \in S$, then $x+2 \in S$
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Recursive definitions of sets

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$, then $x+y \in S$;

Basis: $[1,1,0] \in S,[0,1,1] \in S$;
Recursive:

$$
\text { if }[x, y, z] \in S, \alpha \text { in } R, \text { then }[\alpha x, \alpha y, \alpha z] \in S
$$

$$
\text { if }\left[x_{1}, y_{1}, z_{1}\right],\left[x_{2}, y_{2}, z_{2}\right] \in S
$$

$$
\text { then }\left[x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right] \in S
$$

Powers of 3

Recursive Definitions of Sets: General Form

- Recursive definition
- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S .
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Structural Induction versus Ordinary Induction

- Ordinary induction is a special case of structural induction:
- Recursive Definition of \mathbb{N}
- Basis: $0 \in \mathbb{N}$
- Recursive Step: If $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$
- Structural induction follows from ordinary induction
- Let $Q(n)$ be true iff for all $x \in S$ that take n Recursive steps to be constructed, $\mathrm{P}(\mathrm{x})$ is true.

Strings

Function definitions on recursively defined sets

```
Len(\lambda)=0;
```

$\operatorname{Len}(w x)=1+\operatorname{Len}(w) ;$ for $w \in \Sigma^{*}, x \in \Sigma$

- The set Σ^{*} of strings over the alphabet Σ is defined by
- Basis: $\lambda \in S$ (λ is the empty string)

Concat $(w, \lambda)=w$ for $w \in \Sigma^{*}$
Concat $\left(w_{1}, w_{2} x\right)=\operatorname{Concat}\left(w_{1}, w_{2}\right) x$ for W_{1}, w_{2} in $\Sigma^{*}, x \in \Sigma$

