

Bounding the Fibonacci Numbers

• Theorem: $2^{n/2-1} \le f_n < 2^n$ for $n \ge 2$

Recursive Definitions of Sets

- Recursive definition
 - Basis step: $0 \in S$
 - Recursive step: if $x \in S$, then $x + 2 \in S$
 - Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Recursive definitions of sets

 $\begin{array}{l} \text{Basis: } [1, 1, 0] \in S, [0, 1, 1] \in S;\\ \text{Recursive:}\\ & \text{ if } [x, y, z] \in S, \ \alpha \ \text{in } R, \ \text{then } [\alpha \ x, \alpha \ y, \alpha \ z] \in S\\ & \text{ if } [x_1, y_1, z_1], [x_2, y_2, z_2] \in S\\ & \text{ then } [x_1 + x_2, y_1 + y_2, z_1 + z_2] \in S \end{array}$

Powers of 3

Recursive Definitions of Sets: General Form

- Recursive definition
 - Basis step: Some specific elements are in S
 - Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
 - Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Structural Induction versus Ordinary Induction

- Ordinary induction is a special case of structural induction:
 - Recursive Definition of $\mathbb N$
 - Basis: $0 \in \mathbb{N}$

Autumn 2011

- Recursive Step: If $k\in\mathbb{N}$ then $k{+}1\in\mathbb{N}$
- Structural induction follows from ordinary induction
 - Let Q(n) be true iff for all x∈S that take n Recursive steps to be constructed, P(x) is true.

CSE 311

Using Structural Induction

• Let S be given by

Autumn 2011

- Basis: $6 \in S$; $15 \in S$;
- Recursive: if $x, y \in S$, then $x + y \in S$.
- Claim: Every element of S is divisible by 3

CSE 311

Strings

- An *alphabet* Σ is any finite set of characters.
- The set Σ^* of strings over the alphabet Σ is defined by
 - Basis: $\lambda \in \, {\sf S} \,$ (λ is the empty string)
 - Recursive: if $w\in\,\Sigma^*$, $x\in\,\Sigma,$ then $wx\in\,\Sigma^*$

Function definitions on recursively defined sets

 $\begin{array}{l} \text{Concat}(w,\lambda)=w \text{ for } w\in \Sigma^*\\ \text{Concat}(w_1,w_2x)=\text{Concat}(w_1,w_2)x \text{ for } w_1,w_2 \text{ in } \Sigma^*,x\in \Sigma \end{array}$