
CSE 311 Foundations of

Computing I

Lecture 14

Induction and Recursive Definitions

Autumn 2011

Autumn 2011 CSE 311 1

Announcements

• Reading assignments

– Today:

• 5.2, 5.3 7th Edition

• 4.2, 4.3 6th Edition

• 3.3, 3.4 5th Edition

– Monday: 5.3 (7th), 4.3 (6th), 3.4 (5th)

• Midterm next Friday, Nov 4

– Closed book, closed notes

– Practice midterm available Monday

– Extra office hours Thursday, times TBA

Autumn 2011 CSE 311 2

Highlights from last lecture

• Mathematical Induction

• Induction proof layout:

1. By induction we will show that P(n) is true for every n≥0

2. Base Case: Prove P(0)

3. Inductive Hypothesis: Assume that P(k) is true for
some arbitrary integer k ≥ 0

4. Inductive Step: Prove that P(k+1) is true using Inductive
Hypothesis that P(k) is true

5. Conclusion: Result follows by induction

P(0)

∀ k≥0 (P(k) → P(k+1))
∴ ∀ n≥0 P(n)

Harmonic Numbers

for all � ≥ 1

Cute Application: Checkerboard

Tiling with Trinominos

Prove that a 2n × 2n checkerboard with one

square removed can be tiled with:

Strong Induction

P(0)
∀∀∀∀ k ((P(0) ∧∧∧∧ P(1) ∧∧∧∧ P(2) ∧∧∧∧ … ∧∧∧∧ P(k)) → P(k+1))

∴ ∀∀∀∀ n P(n)

Follows from ordinary induction applied to
Q(n) = P(0) ∧∧∧∧ P(1) ∧∧∧∧ P(2) ∧∧∧∧ … ∧∧∧∧ P(n)

Strong Induction English Proofs

1. By induction we will show that P(n) is true for

every n≥0

2. Base Case: Prove P(0)

3. Inductive Hypothesis: Assume that for some

arbitrary integer k ≥ 0, P(j) is true for every j from

0 to k

4. Inductive Step: Prove that P(k+1) is true using

Inductive Hypothesis that P(j) is true for all values

≤ k

5. Conclusion: Result follows by induction

Autumn 2011 CSE 311 7

Every integer ≥ 2 is the product of primes

Autumn 2011 CSE 311 8

Recursive Definitions of Functions

• F(0) = 0; F(n + 1) = F(n) + 1;

• G(0) = 1; G(n + 1) = 2 × G(n);

• 0! = 1; (n+1)! = (n+1) × n!

• H(0) = 1; H(n + 1) = 2H(n)

Fibonacci Numbers

• f0 = 0; f1 = 1; fn = fn-1 + fn-2

Bounding the Fibonacci Numbers

• Theorem: 2n/2-1 ≤ fn < 2n for n ≥ 2

Fibonacci numbers and the running

time of Euclid’s algorithm

• Theorem: Suppose that Euclid’s algorithm takes n
steps for gcd(a,b) with a>b, then a ≥ fn+1
so a ≥ 2(n-1)/2

– # of steps at most one more than twice # of bits of a

• Set rn+1=a, rn=b then Euclid’s alg. computes

rn+1= qnrn + rn-1

rn= qn-1rn-1 + rn-2

●●●

r3= q2r2 + r1

r2= q1r1

Autumn 2011 CSE 311 12

each quotient qi ≥ 1
r1 ≥ 1

Recursive Definitions of Sets

• Recursive definition

– Basis step: 0 ∈ S

– Recursive step: if x ∈ S, then x + 2 ∈ S

– Exclusion rule: Every element in S follows from

basis steps and a finite number of recursive steps

Recursive definitions of sets

Basis: 6 ∈ S; 15 ∈ S;
Recursive: if x, y ∈ S, then x + y ∈ S;

Basis: [1, 1, 0] ∈ S, [0, 1, 1] ∈ S;
Recursive:

if [x, y, z] ∈ S, α in R, then [α x, α y, α z] ∈ S
if [x1, y1, z1], [x2, y2, z2] ∈ S

then [x1 + x2, y1 + y2, z1 + z2]

Powers of 3

Strings

• The set Σ* of strings over the alphabet Σ is

defined

– Basis: λ ∈ S (λ is the empty string)

– Recursive: if w ∈ Σ*, x ∈ Σ, then wx ∈ Σ*

Function definitions on recursively

defined sets

Len(λ) = 0;
Len(wx) = 1 + Len(w); for w ∈ Σ*, x ∈ Σ

Concat(w, λ) = w for w ∈ Σ*

Concat(w1,w2x) = Concat(w1,w2)x for w1, w2 in Σ*, x ∈ Σ

