













Recursive Definitions of Functions
F(0) = 0; F(n + 1) = F(n) + 1;

- G(0) = 1;  $G(n + 1) = 2 \times G(n)$ ;
- 0! = 1; (n+1)! = (n+1) × n!
- H(0) = 1; H(n + 1) = 2<sup>H(n)</sup>



## Bounding the Fibonacci Numbers

• Theorem:  $2^{n/2\text{-}1} \leq f_n < 2^n \text{ for } n \geq 2$ 



#### **Recursive Definitions of Sets**

- Recursive definition
  - Basis step:  $0 \in S$
  - Recursive step: if  $x \in S$ , then  $x + 2 \in S$
  - Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

#### Recursive definitions of sets

 $\begin{array}{l} \text{Basis:} [1, 1, 0] \in S, [0, 1, 1] \in S; \\ \text{Recursive:} \\ \text{ if } [x, y, z] \in S, \ \alpha \text{ in } R, \ \text{then } [\alpha \, x, \alpha \, y, \alpha \, z] \in S \\ \text{ if } [x_1, y_1, z_1], [x_2, y_2, z_2] \in S \\ \text{ then } [x_1 + x_2, y_1 + y_2, z_1 + z_2] \end{array}$ 

Powers of 3

### Strings

- The set  $\Sigma^*$  of strings over the alphabet  $\Sigma$  is defined
  - Basis:  $\lambda \in S$  ( $\lambda$  is the empty string)
  - Recursive: if  $w \in \Sigma^*$ ,  $x \in \Sigma$ , then  $wx \in \Sigma^*$

# Function definitions on recursively defined sets

 $\begin{array}{l} \text{Concat}(w,\lambda) = w \text{ for } w \in \Sigma^* \\ \text{Concat}(w_1,w_2x) = \text{Concat}(w_1,w_2)x \text{ for } w_1, \, w_2 \text{ in } \Sigma^*, x \in \Sigma \end{array}$