CSE 311 Foundations of Computing I

Lecture 14
Induction and Recursive Definitions Autumn 2011

Autumn 2011 CSE 311

Announcements

- Reading assignments
- Today:
- 5.2, $5.3 \quad 7^{\text {th }}$ Edition
- 4.2, $4.36^{\text {th }}$ Edition
- 3.3, $3.45^{\text {th }}$ Edition
- Monday: $5.3\left(7^{\text {th }}\right), 4.3\left(6^{\text {th }}\right), 3.4\left(5^{\text {th }}\right)$
- Midterm next Friday, Nov 4
- Closed book, closed notes
- Practice midterm available Monday
- Extra office hours Thursday, times TBA

Autumn 2011
CSE 311

Harmonic Numbers
$H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots \frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}$
Prove $H_{2^{n}} \geq 1+\frac{n}{2}$ for all $n \geq 1$

- Induction proof layout:

1. By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis: Assume that $P(k)$ is true for
some arbitrary integer $k \geq 0$
4. Inductive Step: Prove that $\mathrm{P}(\mathrm{k}+1)$ is true using Inductive Hypothesis that $P(k)$ is true
5. Conclusion: Result follows by induction

Cute Application: Checkerboard Tiling with Trinominos

Prove that a $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with: \qquad

Strong Induction

$\mathrm{P}(0)$
$\forall k((P(0) \wedge P(1) \wedge P(2) \wedge \ldots \wedge P(k)) \rightarrow P(k+1))$
$\therefore \forall \mathrm{nP}(\mathrm{n})$
Follows from ordinary induction applied to $Q(n)=P(0) \wedge P(1) \wedge P(2) \wedge \ldots \wedge P(n)$

Strong Induction English Proofs

1. By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis: Assume that for some arbitrary integer $\mathrm{k} \geq 0, \mathrm{P}(\mathrm{j})$ is true for every j from 0 to k
4. Inductive Step: Prove that $P(k+1)$ is true using Inductive Hypothesis that $P(j)$ is true for all values $\leq k$
5. Conclusion: Result follows by induction

Autumn 2011 CSE 311

Every integer ≥ 2 is the product of primes

Autumn 2011 CSE 311

Fibonacci Numbers

- $f_{0}=0 ; f_{1}=1 ; f_{n}=f_{n-1}+f_{n-2}$

Fibonacci numbers and the running time of Euclid's algorithm

- Theorem: Suppose that Euclid's algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a>b$, then $a \geq f_{n+1}$ so $a \geq 2^{(n-1) / 2}$
- \# of steps at most one more than twice \# of bits of a
- Set $r_{n+1}=a, r_{n}=b$ then Euclid's alg. computes
$r_{n+1}=q_{n} r_{n}+r_{n-1} \quad$ each quotient $q_{i} \geq 1$
$r_{n}=q_{n-1} r_{n-1}+r_{n-2} \quad r_{1} \geq 1$
-••
$r_{3}=q_{2} r_{2}+r_{1}$
$r_{2}=q_{1} r_{1}$

Recursive Definitions of Sets

- Recursive definition
- Basis step: $0 \in S$
- Recursive step: if $x \in S$, then $x+2 \in S$
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Recursive definitions of sets

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$, then $x+y \in S$;

Basis: $[1,1,0] \in S,[0,1,1] \in S$;
Recursive:
if $[x, y, z] \in S, \alpha$ in R, then $[\alpha x, \alpha y, \alpha z] \in S$
if $\left[x_{1}, y_{1}, z_{1}\right],\left[x_{2}, y_{2}, z_{2}\right] \in S$
then $\left[x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right]$

Powers of 3

Strings

- The set Σ^{*} of strings over the alphabet Σ is defined
- Basis: $\lambda \in S$ (λ is the empty string)
- Recursive: if $w \in \Sigma^{*}, x \in \Sigma$, then $w x \in \Sigma^{*}$

