

Announcements

Induction Example

- Want to prove $3 \mid 2^{2 n}-1$ for all $n \geq 0$
- $\mathrm{n}=0$
- $\mathrm{n}=1$
- $\mathrm{n}=2$
-n=3
- ...

Bezout: \exists s,t such that $\operatorname{gcd}(\mathrm{a}, \mathrm{m})=\mathrm{sa}+\mathrm{tm}$
\quad - E.g. $3=1 \times 12-1 \times 9=1 \times 12-1 \times(33-2 \times 12)=-1 \times 33+3 \times 12$
$=-1 \times 33+3 \times(78-2 \times 33)=3 \times 78-7 \times 33$

- Uniquely solve $a x \equiv b(\bmod m)$ for $0 \leq x<m$ if $\operatorname{gcd}(a, m)=1$

Autumn 2011

Induction as a rule of Inference

How would we use the induction rule in a formal proof?

Domain: integers ≥ 0
P(0)
$\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
$\therefore \forall \mathrm{nP}(\mathrm{n})$

```
P(0)
\forallk(P(k)->P(k+1))
\therefore\forallnP(n)
    1. Prove P(0)
    2. Let }\textrm{k}\mathrm{ be an arbitrary integer }\geq
        3. Assume that P(k) is true
        4. ..
        5. Prove P(k+1) is true
```

 6. \(P(k) \rightarrow P(k+1)\)
 7. \(\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)) \quad\) Intro \(\forall\) from 2-6
 8. \(\forall \mathrm{nP}(\mathrm{n}) \quad\) Induction Rule 1\&7 Induction Rule 1\&7

Induction Example

- Want to prove $3 \mid 2^{2 n}-1$ for all $n \geq 0$
$1+2+\ldots+n=\sum_{i=1}^{n} i=n(n+1) / 2$ for all $n \geq 1$

5 Steps to Inductive Proofs in English

Proof:

1. "By induction we will show that $\mathrm{P}(\mathrm{n})$ is true for every $n \geq 0$ "
2. "Base Case:" Prove P(0)
3. "Inductive Hypothesis: Assume that $P(k)$ is true for some arbitrary integer $\mathrm{k} \geq 0^{\prime \prime}$
4. "Inductive Step:" Want to prove that $\mathrm{P}(\mathrm{k}+1)$ is true: Use the goal to figure out what you need. Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)!$)
5. "Conclusion: Result follows by induction"

Autumn 2011 CSE 311
$1+2+4+\ldots+2^{n}=2^{n+1}-1$ for all $n \geq 0$

Cute Application: Checkerboard

 Tiling with TrinominosProve that a $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with:

