
CSE 311  Foundations of 
Computing I 

Lecture 10 

Divisibility and Modular Arithmetic 

Autumn 2011 

 

Autumn 2011 CSE 311 1 

Announcements 

• Reading assignments 

– Today:  

• 4.1-4.2                            7th Edition 

• 3.4, 3.6 up to p. 227     6th Edition 

• 2.4, 2.5 up to p. 177     5th Edition 

• Homework 4 

– Coming soon . . .  

 

 

 
Autumn 2011 CSE 311 2 

Highlights from last lecture 

• Set theory and ties to logic 

• Lots of terminology 
• Complement, Universe of Discourse, Cartesian 

Product, Cardinality, Power Set,  Empty Set, N, Z, 
Z+, Q, R, Subset,  Proper Subset, Venn Diagram, 
Set Difference, Symmetric Difference, De Morgan’s 
Laws, Distributive Laws 

• Bit vector representation of characteristic 
functions 
• Bitwise operations for Set operations 

 
Autumn 2011 CSE 311 3 

Unix/Linux file permissions 

• ls –l 

    drwxr-xr-x ... Documents/ 

    -rw-r--r-- ... file1 

 

• Permissions maintained as bit vectors 

– Letter means bit is 1    - means bit is 0. 

• How is chmod og+r implemented? 

Autumn 2011 CSE 311 4 

A simple identity 

• If x and y are bits:  (x  y)  y  = ? 

 

• What if x and y are bit-vectors? 

Autumn 2011 CSE 311 5 

Private Key Cryptography  

• Alice wants to be able to communicate 
message secretly to Bob so that eavesdropper 
Eve who hears their conversation, cannot tell 
what Alice’s message is 

 

• Alice and Bob can get together and privately 
share a secret key K ahead of time. 

Autumn 2011 CSE 311 6 



One-time pad 

• Alice and Bob privately share random n-bit vector K  

– Eve does not know K 
 

• Later, Alice has n-bit message m to send to Bob 

– Alice computes  C = m  K 

– Alice sends C to Bob 

– Bob computes m = C  K which is (m  K)  K 

 

• Eve cannot figure out m from C unless she can guess K 

Autumn 2011 CSE 311 7 

Russell’s Paradox 

S = { x | x  x } / 

Number Theory (and applications 
to computing) 

• Branch of Mathematics with direct relevance 
to computing 

• Many significant applications 

– Cryptography 

– Hashing 

– Security 

• Important tool set 

Modular Arithmetic 

• Arithmetic over a finite domain 

• In computing, almost all computations are 
over a finite domain 

What are the values computed? 

 public void Test1() { 

            byte x = 250; 

            byte y = 20; 

            byte z = (byte) (x + y); 

            Console.WriteLine(z); 

 }  

 public void Test2() { 

            sbyte x = 120; 

            sbyte y = 20; 

            sbyte z = (sbyte) (x + y); 

            Console.WriteLine(z); 

 }  

Autumn 2011 CSE 311 12 



Arithmetic mod 7 

• a +7 b = (a + b) mod 7 

• a 7 b = (a  b) mod 7 

 + 0 1 2 3 4 5 6 

0 

1 

2 

3 

4 

5 

6 

 X 0 1 2 3 4 5 6 

0 

1 

2 

3 

4 

5 

6 

Divisibility 

Autumn 2011 CSE 311 14 

Integers a, b, with a ≠ 0, we say that a divides b is 

there is an integer k such that b = ak.  The notation   

a | b denotes a divides b. 

Division Theorem 

Autumn 2011 CSE 311 15 

Let a be an integer and d a positive integer.  

Then there are unique integers q and r, with 

0 ≤ r < d, such that a = dq + r. 

q = a div d            r = a mod d 

Note: r ≥ 0 even if a < 0.  Not quite the same as a%d   

Modular Arithmetic 

Autumn 2011 CSE 311 16 

Let a and b be integers, and m be a positive integer.  

We say a is congruent to b modulo m if m divides a – b.  

We use the notation a ≡ b (mod m) to indicate that a is 

congruent to b modulo m. 

Modular arithmetic 

Autumn 2011 CSE 311 17 

Let a and b be integers, and let m be a positive 

integer.  Then a ≡ b (mod m) if and only if  

a mod m = b mod m. 

Modular arithmetic 

Autumn 2011 CSE 311 18 

Let m be a positive integer.  If a ≡ b (mod m) and     

c ≡ d (mod m), then 

• a + c ≡ b + d (mod m)    and       

• ac ≡ bd (mod m) 



Example 

Autumn 2011 CSE 311 19 

Let n be an integer, prove that n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4) 


