

Highlights from last lecture

- Set theory and ties to logic
- Lots of terminology
- Complement, Universe of Discourse, Cartesian Product, Cardinality, Power Set, Empty Set, N, Z, $Z^{+}, ~ Q, ~ R, ~ S u b s e t$, Proper Subset, Venn Diagram, Set Difference, Symmetric Difference, De Morgan's Laws, Distributive Laws
- Bit vector representation of characteristic functions
- Bitwise operations for Set operations
\qquad

A simple identity

- If x and y are bits: $(x \oplus y) \oplus y=$?
- What if x and y are bit-vectors?

Announcements

- Reading assignments
- Today:
- 4.1-4.2 $\quad 7^{\text {th }}$ Edition
- 3.4, 3.6 up to $p .2276^{\text {th }}$ Edition
- 2.4, 2.5 up to $\mathrm{p} .1775^{\text {th }}$ Edition
- Homework 4
- Coming soon...

Autumn 2011

Unix/Linux file permissions

- ls -l

$$
\begin{aligned}
& \text { drwxr-xr-x . . . Documents/ } \\
& \text {-rw-r--r-- ... file1 }
\end{aligned}
$$

- Permissions maintained as bit vectors - Letter means bit is 1 - means bit is 0 .
- How is chmod og+r implemented?
\qquad

$$
\text { Autumn } 2011
$$

CSE 311

Private Key Cryptography

- Alice wants to be able to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation, cannot tell what Alice's message is
- Alice and Bob can get together and privately share a secret key K ahead of time.

One-time pad

- Alice and Bob privately share random n-bit vector K
- Eve does not know K
- Later, Alice has n-bit message m to send to Bob
- Alice computes $\mathrm{C}=\mathrm{m} \oplus \mathrm{K}$
- Alice sends C to Bob
- Bob computes $m=C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

Autumn 2011
CSE 311

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
- Cryptography
- Hashing
- Security
- Important tool set

What are the values computed?

```
public void Test1() {
    byte x = 250;
    byte y = 20;
    byte z = (byte) (x+y)
    Console.WriteLine(z);
}
public void Test2() \{ sbyte \(x=120\);
sbyte \(y=20\);
sbyte \(z=(\) sbyte \()(x+y) ;\)
Console.WriteLine(z);
```

Russell's Paradox

$$
S=\{x \mid x \notin x\}
$$

Modular Arithmetic
 - Arithmetic over a finite domain
 - In computing, almost all computations are over a finite domain

What are the values computed?	
public void Test1() \{ byte $x=250$; byte $y=20$; byte $z=$ (byte) $(x+y)$; Console.WriteLine(z);	public void Test2() \{ sbyte $x=120$; sbyte $\mathrm{y}=20$; sbyte $\mathrm{z}=($ sbyte $)(\mathrm{x}+\mathrm{y})$; Console.WriteLine(z);

Arithmetic mod 7

- $a+{ }_{7} b=(a+b) \bmod 7$
- $a \times_{7} b=(a \times b) \bmod 7$

Divisibility

Integers a, b, with $a \neq 0$, we say that a divides b is there is an integer k such that $b=a k$. The notation $a \mid b$ denotes a divides b.

Modular Arithmetic

Let a and b be integers, and m be a positive integer.
We say a is congruent to b modulo m if m divides $\mathrm{a}-\mathrm{b}$. We use the notation $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ to indicate that a is congruent to b modulo m .

Division Theorem

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \leq r<d$, such that $a=d q+r$.

Modular arithmetic

Let a and b be integers, and let m be a positive integer. Then $a \equiv b(\bmod m)$ if and only if $a \bmod m=b \bmod m$.

Modular arithmetic

Let m be a positive integer. If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ and $c \equiv d(\bmod m)$, then

- $a+c \equiv b+d(\bmod m)$ and
- $\mathrm{ac} \equiv \mathrm{bd}(\bmod m)$

Example

