## CSE 311 Foundations of Computing I

Lecture 9
Set Theory and Functions
Autumn 2011

Autumn 2011
CSE 311

## Announcements

- Reading assignments
- Today: Sets and Functions
- 2.1-2.3 $\quad 6^{\text {th }}$ and $7^{\text {th }}$ Editions
- 1.6-1.8 $5^{\text {th }}$ Edition
- Wednesday:
- 4.1-4.2 $\quad 7^{\text {th }}$ Edition
- 3.4, 3.6 up to $p .2276^{\text {th }}$ Edition
- 2.4, 2.5 up to p. $1775^{\text {th }}$ Edition

Autumn 2011

## Set Theory

- Formal treatment dates from late $19^{\text {th }}$ century
- Direct ties between set theory and logic
- Important foundational language

Definition: A set is an unordered collection of objects
$x \in A$ : " $x$ is an element of $A$ "
" $x$ is a member of $A$ "
" $x$ is in A"
$x \notin \mathrm{~A}: \quad \neg(x \in \mathrm{~A})$

## Definitions

- $A$ and $B$ are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- $A$ is a subset of $B$ if every element of $A$ is also in B

$$
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

## Empty Set and Power Set

- Empty set $\emptyset$ does not contain any elements
- Power set of a set $A=$ set of all subsets of $A$

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

## Set operations

$A \cup B=\{x \mid(x \in A) \vee(x \in B)\} \quad$ union
$A \cap B=\{x \mid(x \in A) \wedge(x \in B)\} \quad$ intersection
$\mathrm{A}-\mathrm{B}=\{x \mid(x \in \mathrm{~A}) \wedge(x \notin \mathrm{~B})\} \quad$ set difference
$\mathrm{A} \oplus \mathrm{B}=\{x \mid(x \in \mathrm{~A}) \oplus(x \in \mathrm{~B})\} \quad$ symmetric
$\overline{\mathrm{A}}=\{x \mid x \notin \mathrm{~A}\} \quad$ complement (with respect to universe U )

| Set operations |  |
| :---: | :---: |
| $\mathrm{A} \cup \mathrm{B}=\{x \mid(x \in \mathrm{~A}) \vee(x \in \mathrm{~B})\}$ | union |
| $\mathrm{A} \cap \mathrm{B}=\{x \mid(x \in \mathrm{~A}) \wedge(x \in \mathrm{~B})\}$ | intersection |
| $\mathrm{A}-\mathrm{B}=\{x \mid(x \in \mathrm{~A}) \wedge(x \notin \mathrm{~B})\}$ | set difference |
| $\mathrm{A} \oplus \mathrm{B}=\{x \mid(x \in \mathrm{~A}) \oplus(x \in \mathrm{~B})\}$ | symmetric <br> difference |
| $\overline{\mathrm{A}}=\{x \mid x \notin \mathrm{~A}\}$ <br> (with respect to universe U$)$ |  |

Cartesian Product : A $\times \mathrm{B}$

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

## It's Boolean algebra again

- Definition for $\cup$ based on $\vee$
- Definition for $\cap$ based on $\wedge$
- Complement works like $\neg$


## De Morgan's Laws

$\overline{\mathrm{A} \cup \mathrm{B}}=\overline{\mathrm{A}} \cap \overline{\mathrm{B}}$
$\overline{\mathrm{A} \cap \mathrm{B}}=\overline{\mathrm{A}} \cup \overline{\mathrm{B}}$


> Proof technique:
> To show $\mathrm{C}=\mathrm{D}$ show
> $x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
> $x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

## Distributive Laws

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$



## Characteristic vectors: <br> Representing sets using bits

- Suppose universe $U$ is $\{1,2, \ldots, n\}$
- Can represent set $B \subseteq U$ as a vector of bits:
$b_{1} b_{2} \ldots b_{n}$ where $b_{i}=1 \equiv(i \in B)$
$b_{i}=0 \equiv(i \notin B)$
- Called the characteristic vector of set B
- Given characteristic vectors for $A$ and $B$
- What is characteristic vector for $A \cup B$ ? $A \cap B$ ?

Autumn 2011
CSE 311

## A simple identity

- If $x$ and $y$ are bits: $(x \oplus y) \oplus y=$ ?
-What if $x$ and $y$ are bit-vectors?

Boolean operations on bit-vectors: (a.k.a. bit-wise operations)

- 01101101

Java: $\mathbf{z = x | y}$
$\vee \underline{00110111}$ 01111111

- 00101010
$\wedge 00001111$
00001010
- $01101101 \quad$ Java: $\mathbf{z =}=\mathbf{x}^{\wedge} \mathbf{y}$
$\oplus \underline{00110111}$ 01011010

Autumn 2011

## Private Key Cryptography

- Alice wants to be able to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation, cannot tell what Alice's message is
- Alice and Bob can get together and privately share a secret key K ahead of time.

Autumn 2011

## Unix/Linux file permissions

- ls -l
drwxr-xr-x ... Documents /
-rw-r-ーrー- ... file1
- Permissions maintained as bit vectors
- Letter means bit is 1 - means bit is 0 .
- Eve cannot figure out m from C unless she can guess K

Autumn 2011 CSE 311

## Functions review

- A function from $A$ to $B$
- an assignment of exactly one element of $B$ to each element of $A$.
- We write $f: A \rightarrow B$.
- "Image of $a$ " = $f(a)$
- Domain of $f$ : A
- Range of $f=$ set of all images of elements of $A$


Russell's Paradox

$$
S=\{x \mid x \notin x\}
$$

