CSE 311 Foundations of Computing I

Lecture 9
Set Theory and Functions
Autumn 2011

Autumn 2011 CSE 311 1

Announcements

- · Reading assignments
 - Today: Sets and Functions
 - 2.1-2.3 6th and 7th Editions
 - 1.6-1.8 5th Edition
 - Wednesday:
 - 4.1-4.2 7th Edition
 - 3.4, 3.6 up to p. 227 6th Edition
 - 2.4, 2.5 up to p. 177 5th Edition

Autumn 2011 CSE 311

Highlights from last lecture

- Formal proofs:
 - simple well-defined rules
 - easy to check
- English proofs correspond to those rules
 - designed to be easier for humans to read
 - easily checkable in principle
- Simple proof strategies already do a lot
 - Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Autumn 2011 CSE 311

Set Theory

- Formal treatment dates from late 19th century
- Direct ties between set theory and logic
- Important foundational language

Definition: A set is an unordered collection of objects

 $x \in A$: "x is an element of A"

"x is a member of A"

"x is in A"

 $x \notin A$: $\neg (x \in A)$

Definitions

• A and B are *equal* if they have the same elements

$$A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$$

 A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

Empty Set and Power Set

- Empty set Ø does not contain any elements
- Power set of a set A = set of all subsets of A $\mathcal{P}(A) = \{ B : B \subseteq A \}$

Cartesian Product : A × B

$$A \times B = \{ (a, b) \mid a \in A \land b \in B \}$$

Set operations

 $A \cup B = \{ x \mid (x \in A) \lor (x \in B) \}$

union

 $A \cap B = \{ x \mid (x \in A) \land (x \in B) \}$

intersection

 $A - B = \{ x \mid (x \in A) \land (x \notin B) \}$

set difference

 $A \oplus B = \{ x \mid (x \in A) \oplus (x \in B) \}$

symmetric difference

 $\overline{A} = \{ x \mid x \notin A \}$

(with respect to universe U)

complement

It's Boolean algebra again

- Definition for \cup based on \vee
- Definition for \cap based on \wedge
- Complement works like ¬

Autumn 2011

CSE 311

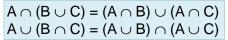
De Morgan's Laws

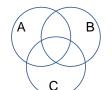
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

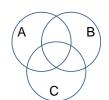
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Distributive Laws







Characteristic vectors: Representing sets using bits

- Suppose universe U is {1,2,...,n}
- Can represent set $B \subseteq U$ as a vector of bits:

 $b_1b_2...b_n$ where $b_i=1 \equiv (i \in B)$

$$b_i=0 \equiv (i \notin B)$$

- Called the *characteristic vector* of set B
- Given characteristic vectors for A and B
 - What is characteristic vector for $A \cup B$? $A \cap B$?

Boolean operations on bit-vectors: (a.k.a. bit-wise operations)

01101101

Java: z=x|y

∨ <u>00110111</u> 01111111

Java: z=x&y

∧ 00001111

00101010 00001010

Java: z=x^y

01101101 \oplus 00110111 01011010

A simple identity

- If x and y are bits: $(x \oplus y) \oplus y = ?$
- What if x and y are bit-vectors?

Autumn 2011 CSE 311

Private Key Cryptography

- Alice wants to be able to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation, cannot tell what Alice's message is
- Alice and Bob can get together and privately share a secret key K ahead of time.

Autumn 2011 CSF 311

One-time pad

- Alice and Bob privately share random n-bit vector K
 - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
 - Alice computes $C = m \oplus K$
 - Alice sends C to Bob
 - Bob computes m = C \oplus K which is (m \oplus K) \oplus K
- Eve cannot figure out m from C unless she can guess K

Unix/Linux file permissions

• ls -1

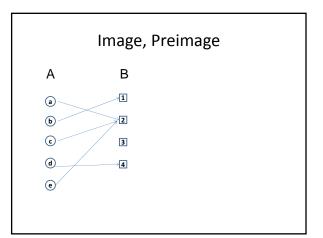
drwxr-xr-x ... Documents/ -rw-r--r-- ... file1

• Permissions maintained as bit vectors

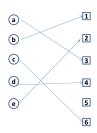
Letter means bit is 1 - means bit is 0.

Functions review

- A *function* from A to B
 - an assignment of exactly one element of *B* to each element of *A*.
 - We write $f: A \rightarrow B$.
 - "Image of a'' = f(a)
- Domain of f: A
- Range of f = set of all images of elements of A



Is this a function? one-to-one? onto?



Russell's Paradox

$$S = \{ x \mid x \notin x \}$$