

Even and Odd

Autumn 2011

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

 Prove: "No number is both even and odd" English proof: ¬∃x (Even(x)∧Odd(x)) ≡∀x ¬(Even(x)∧Odd(x))

Let x be any integer and suppose that it is both even and odd. Then x=2k for some integer k and x=2n+1 for some integer n. Therefore 2k=2n+1 and hence $k=n+\frac{1}{2}$. But two integers cannot differ by $\frac{1}{2}$ so this is a contradiction.

CSE 311

