CSE 311 Foundations of Computing I

Lecture 8
Proofs
Autumn 2011

Autumn 201 CSE 311

Announcements

- Reading assignments
- Logical Inference
- 1.6, $1.7 \quad 7^{\text {th }}$ Edition
- 1.5, $1.6 \quad 6^{\text {th }}$ Edition
- 1.5, $3.1 \quad 5^{\text {th }}$ Edition

Autumn 2011
CSE 311

Simple Propositional Inference Rules

- Excluded middle

$$
\therefore p \vee \neg p
$$

- Two inference rules per binary connective one to eliminate it, one to introduce it.
- Introduction and elimination rules for \wedge, \vee
- Introduction and elimination rules for \rightarrow
- Modus Ponens and Direct Proof rule
- Introduction and elimination rules for \forall, \exists
- Proofs
$p \wedge q \quad p, q$
$\therefore \mathrm{p}, \mathrm{q} \quad \therefore \mathrm{p} \wedge \mathrm{q}$
$p \vee q, \neg p$ \qquad
p
$\therefore \mathrm{q}$
$\therefore \mathrm{p} \vee \mathrm{q}, \mathrm{q} \vee \mathrm{p}$
$p, p \rightarrow q$
$\therefore \mathrm{q}$
Autumn 2011

General Proof Strategy

A. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
B. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do A.
C. Write the proof beginning with B followed by A.

Autumn 2011
CSE 311

Example

- Prove $((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$
\square
Autumn 2011 CSE 311

Inference Rules for Quantifiers

$P(c)$ for some c	$\forall \mathrm{xP}(\mathrm{x})$
$\therefore \exists \mathrm{xP}(\mathrm{x})$	$\therefore \mathrm{P}(\mathrm{a})$ for any a
"Let a be anything*"...P(a)	$\exists \mathrm{x} P(\mathrm{x})$
$\therefore \forall \mathrm{xP}(\mathrm{x})$	$\therefore \mathrm{P}(\mathrm{c})$ for some special c
*in the domain of P	
Axum 201 CSE311	8^{8}

Even and Odd
 Even $(x) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1)$ Domain: Integers

- Prove: "The square of every even number is even" Formal proof of: $\forall \mathrm{x}\left(\operatorname{Even}(\mathrm{x}) \rightarrow \operatorname{Even}\left(\mathrm{x}^{2}\right)\right)$

"Proof by Contradiction":
 One way to prove $\neg \mathrm{p}$

- If we assume p and derive False (a contradiction) then we have proved \neg p.

> 1. p .. Assumption 3. F
4. $\mathrm{p} \rightarrow \mathbf{F}$ Direct Proof rule
5. $\neg p \vee F \quad$ Equivalence from 4
6. $\neg p$ Equivalence from 5

Even and Odd
 Even $(x) \equiv \exists y \quad(x=2 y)$ $\operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1)$ Domain: Integers

- Prove: "No number is both even and odd" English proof: $\neg \exists x(\operatorname{Even}(x) \wedge O d d(x))$ $\equiv \forall x \neg(\operatorname{Even}(x) \wedge O d d(x))$

Let x be any integer and suppose that it is both even and odd. Then $x=2 k$ for some integer k and $x=2 n+1$ for some integer n. Therefore $2 k=2 n+1$ and hence $k=n+1 / 2$. But two integers cannot differ by $1 / 2$ so this is a contradiction
uutumn 201

Rational Numbers

- A real number x is rational iff there exist integers p and q with $q \neq 0$ such that $x=p / q$.

Rational $(x) \equiv \exists p \exists q \quad((x=p / q) \wedge$ Integer $(p) \wedge$ Integer $(q) \wedge q \neq 0)$

- Prove
- If x and y are rational then $x y$ is rational
- If x and y are rational then $x+y$ is rational

Rational Numbers

- A real number x is rational iff there exist integers p and q with $q \neq 0$ such that $x=p / q$.

Rational $(x) \equiv \exists p \exists q((x=p / q) \wedge$ Integer $(p) \wedge \operatorname{Integer}(q) \wedge q \neq 0)$

- Prove:
- If x and y are rational then $x y$ is rational
$\forall \mathrm{x} \forall \mathrm{y}((\operatorname{Rational}(\mathrm{x}) \wedge$ Rational(y)) \rightarrow Rational(xy))

Domain: Real numbers
Autumn 2011 CSE 3

Rational Numbers

- A real number x is rational iff there exist integers p and q with $q \neq 0$ such that $x=p / q$.
Rational $(x) \equiv \exists p \exists q \quad((x=p / q) \wedge$ Integer $(p) \wedge$ Integer $(q) \wedge q \neq 0)$
- Prove:
- If x and y are rational then $x y$ is rational
- If x and y are rational then $x+y$ is rational
- If x and y are rational then x / y is rational

Autumn 2011

Proofs

- Formal proofs follow simple well-defined rules and should be easy to check
- In the same way that code should be easy to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
- Easily checkable in principle
- Simple proof strategies already do a lot
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

