

Announcements

- Reading assignments
- Predicates and Quantifiers
- 1.4, $1.57^{\text {th }}$ Edition
- $1.3,1.45^{\text {th }}$ and $6^{\text {th }}$ Edition
- See clarification e-mail for HW 2 problem 4 (b) $-F(x, y, z)=x(y z+\bar{y} \bar{z})$

Statements with quantifiers

Highlights from last lecture

- Predicate Calculus
- Predicate: A function that returns a truth value
- Quantifiers
- $\forall x P(x): P(x)$ is true for every x in the domain
- $\exists x P(x)$: There is an x in the domain for which $P(x)$ is true
- e.g. $\forall x(\operatorname{Even}(x) \rightarrow \neg \operatorname{Odd}(x))$
- Multiple Quantifiers
- $\forall x \exists y$ Greater (y, x)

Notlargest(x)
Autumn 2011

English to Predicate Calculus

- "Red cats like tofu"

Goldbach's Conjecture

- Every even integer greater than two can be expressed as the sum of two primes

[^0]
Scope of Quantifiers

- Notlargest(x) $\equiv \exists y$ Greater (y, x)

$$
\equiv \exists z \text { Greater }(z, x)
$$

- Value doesn't depend on y or z "bound variables"
- Value does depend on x "free variable"
- Quantifiers only act on free variables of the formula they quantify
$-\forall x(\exists y(P(x, y) \rightarrow \forall x Q(y, x)))$

Autumn 2011 CSE 311

Scope of Quantifiers

- $\exists x(\mathrm{P}(x) \wedge \mathrm{Q}(x))$ vs $\exists x \mathrm{P}(x) \wedge \exists x \mathrm{Q}(x)$

Autumn 2011 CSE 31

Quantification with two variables

Expression	When true	When false
$\forall x \forall y P(x, y)$		
$\exists x \exists y P(x, y)$		
$\forall x \exists y P(x, y)$		
$\exists y \forall x P(x, y)$		

De Morgan's Laws for Quantifiers

$$
\begin{array}{|l}
\neg \forall \mathrm{x} \\
\neg(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
\neg \exists \mathrm{x} \mathrm{P}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
\hline
\end{array}
$$

De Morgan's Laws for Quantifiers

$$
\begin{aligned}
& \neg \forall \mathrm{x} \quad \mathrm{P}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \exists \mathrm{x} \mathrm{P}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

"There is no largest integer"

$$
\begin{aligned}
& \neg \exists x \forall y \quad(x \geq y) \\
\equiv & \forall x \neg \forall y \quad(x \geq y) \\
\equiv & \forall x \quad \exists y \neg(x \geq y) \\
\equiv & \forall x \quad \exists y \quad(y>x)
\end{aligned}
$$

"For every integer there is a larger integer"

Autumn 201 CSE 311

Applications of Logical Inference

- Software Engineering
- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- AI
- Automated reasoning
- Algorithm design and analysis
- e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
- Express desired outcome as set of constraints
- Automatically apply logic inference to derive solution

Logical Inference

- So far we've considered
- How to understand and express things using propositional and predicate logic
- How to compute using Boolean (propositional) logic
- How to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us infer implied properties from ones that we know
- Equivalence is a small part of this

Autumn 2011
CSE 311

Proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

An inference rule: Modus Ponens

- If p and $p \rightarrow q$ are both true then q must be true
- Write this rule as $p, p \rightarrow q$
$\therefore \mathrm{q}$
- Given:
- If it is Monday then you have a 311 class.
- It is Monday.
- Therefore:
- You have a 311 class

[^0]: Even (x)
 $\operatorname{Odd}(x)$
 Prime (x)
 Greater (x, y)
 Equal (x, y)

 Domain:
 Positive Integers

