

Announcements

- Reading assignments
- Boolean Algebra
- 12.1-12.3 $7^{\text {th }}$ Edition
- 11.1-11.3 $6^{\text {th }}$ Edition
- 10.1-10.3 $5^{\text {th }}$ Edition
- Predicates and Quantifiers
- 1.4, $1.57^{\text {th }}$ Edition
- $1.3,1.45^{\text {th }}$ and $6^{\text {th }}$ Edition

Highlights from last lecture

- Boolean algebra to circuit design
- Boolean algebra
- a set of elements $B=\{0,1\}$
- binary operations $\{+, \bullet\}$
- and a unary operation \{'\}
- such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure:
3. commutativity:
4. associativity:
$\begin{array}{ll}\text {.identity: } & \begin{array}{l}a+(b+c)=(a+b)+c \\ \text { distributivity: }\end{array} \\ a+0=a\end{array}$
$\begin{array}{ll}\text { 5. identity: } & \begin{array}{l}a+0=a \\ \text { 6. distributivity: } \\ \text { 7. complementarity: }\end{array} \\ & a+(b \cdot c)=(a+b) \cdot(a+c) \\ a+a^{\prime}=1\end{array}$
$a \cdot b$ is in
$a \cdot b=b \cdot a$
$a \cdot b=b \cdot a$
$a \bullet(b \cdot c)=(a \bullet b) \cdot c$
$a \cdot 1=a$,
$a \cdot(b \cdot c)=(a \bullet b) \cdot c$
$a \cdot 1=a$
$a \cdot(b+c)=(a \bullet b)+(a \bullet c$
$a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
$a \cdot a^{\prime}=0$

Autumn 2011
CSE 311

A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

Preview: A 2-bit ripple-carry adder

Autumn 2011
CSE 311

Mapping truth tables to logic gates

Canonical forms

- Truth table is the unique signature of a Boolean function
- The same truth table can have many gate realizations
- we've seen this already
- depends on how good we are at Boolean simplification
- Canonical forms
- standard forms for a Boolean expression
- we all come up with the same expression

Autumn 2011
CSE 311

Sum-of-products canonical forms

- Also known as disjunctive normal form
- Also known as minterm expansion

Autumn 2011

Product-of-sums canonical form

- Also known as conjunctive normal form
- Also known as maxterm expansion

S-o-P, P-o-S, and de Morgan's theorem

- Complement of function in sum-of-products form - $F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$
- Complement again and apply de Morgan's and
get the product-of-sums form
$-\left(F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}$
$-F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
- Complement of function in product-of-sums form
$-F^{\prime}=\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)$
- Complement again and apply de Morgan's and get the sum-of-product form
- $\left(F^{\prime}\right)^{\prime}=\left(\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\right)^{\prime}$
$-F=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C$

Predicate Calculus

- Predicate or Propositional Function
- A function that returns a truth value
- " x is a cat"
- " x is prime"
- "student x has taken course y "
- " $x>y$ "
- " $x+y=z$ "

Quantifiers

- $\forall x P(x): P(x)$ is true for every x in the domain
- $\exists x P(x)$: There is an x in the domain for which $P(x)$ is true

Statements with quantifiers

- $\exists x \operatorname{Even}(x)$
- $\forall x \operatorname{Odd}(x)$
- $\forall x(\operatorname{Even}(x) \vee \operatorname{Odd}(x))$

Domain: Positive Integers

Even(x)
$\operatorname{Odd}(x)$
Prime (x)
$\operatorname{Greater}(x, y)$
Equal (x, y)

- $\exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$
- $\forall x \operatorname{Greater}(x+1, x)$
- $\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$

Statements with quantifiers	
- $\exists x \operatorname{Even}(x)$	Domain: Positive Integers
- $\forall x \operatorname{Odd}(x)$	Even (x) Odd (x) Prime (x) Greater (x, y) Equal (x, y)
- $\forall x(\operatorname{Even}(x) \vee \operatorname{Odd}(x))$	
- $\exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$	
- $\forall x \operatorname{Greater}(x+1, x)$	
- $\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$	

Statements with quantifiers

- $\forall x \exists y$ Greater (y, x)
- $\forall x \exists y$ Greater (x, y) Positive Integers
Even (x)
$\operatorname{Odd}(x)$
Prime (x)
Greater (x, y)
Equal (x, y)
- $\forall x \exists y(\operatorname{Greater}(y, x) \wedge \operatorname{Prime}(y))$
- $\forall x(\operatorname{Prime}(x) \rightarrow($ Equal $(x, 2) \vee \operatorname{Odd}(x))$
- $\exists x \exists y($ Equal $(x, y+2) \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y))$

Statements with quantifiers

- "There is an odd prime"
- "If x is greater than two, x is not an even prime"
- $\forall x \forall y \forall z((E q u a l(z, x+y) \wedge \operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow \operatorname{Even}(z))$
- "There exists an odd integer that is the sum of two primes"

Goldbach's Conjecture

- Every even integer greater than two can be expressed as the sum of two primes

[^0]Domain:
Positive Integers

[^0]: Even (x)
 $\operatorname{Odd}(x)$
 Prime (x)
 $\operatorname{Greater}(x, y)$
 Equal (x, y)

