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Announcements 

• Reading assignments 

– Boolean Algebra 

• 12.1 – 12.3 7th Edition 

• 11.1 – 11.3 6th Edition 

• 10.1 – 10.3 5th Edition 

– Predicates and Quantifiers 

• 1.4, 1.5  7th Edition 

• 1.3, 1.4  5th and 6th  Edition 
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Highlights from last lecture 

• Boolean algebra to circuit design 
 

• Boolean algebra   
– a set of elements B = {0, 1} 
– binary operations { + , • } 
– and a unary operation { ’ } 
– such that the following axioms hold: 

 
 1. the set B contains at least two elements: a, b 

2. closure: a + b   is in B a • b   is in B 
3. commutativity: a + b = b + a a • b = b • a 
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c 
5. identity: a + 0 = a a • 1 = a 
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c) 
7. complementarity: a + a’ = 1 a • a’ = 0 
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George Boole – 1854 

A simple example: 1-bit binary adder 

• Inputs: A, B, Carry-in 

• Outputs: Sum, Carry-out 
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A 

B 

Cin 
Cout 

S 
A B Cin Cout S 
0 0 0      
0 0 1         
0 1 0      
0 1 1 
1 0 0      
1 0 1         
1 1 0      
1 1 1      

0 
1 
1 
0 
1 
0 
0 
1 

0 
0 
0 
1 
0 
1 
1 
1 

Cout = B Cin  +  A Cin  +  A B  

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin 
   = A’ (B’ Cin + B Cin’ ) + A (B’ Cin’ + B Cin ) 

   = A’ Z + A Z’ 
   = A xor Z = A xor (B xor Cin) 

A A A A A 

B B B B B 

S S S S S 

Cin Cout 

Preview: A 2-bit ripple-carry adder 
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A1 B1 

Cout Cin 

Sum1 

A 

Sum 

Cout Cin 

B 

1-Bit Adder 

A2 B2 

Sum2 

Cout Cin 0 

A

B

Cin
Sum

A

B

A

Cin

B

Cin

Cout

Mapping truth tables to logic gates 
• Given a truth table: 

1. Write the Boolean expression 
2. Minimize the Boolean expression 
3. Draw as gates 
4. Map to available gates 
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A B C    F 

0 0 0    0 

0 0 1    0 

0 1 0    1 

0 1 1    1 

1 0 0    0 

1 0 1    1 

1 1 0    0 

1 1 1    1 F = A’BC’+A’BC+AB’C+ABC 

   = A’B(C’+C)+AC(B’+B) 

   = A’B+AC 

notA

B

A

C

F
F

notA

B

A

C

1 

2 

3 

4 



Canonical forms 

• Truth table is the unique signature of a Boolean 
function 

• The same truth table can have many gate 
realizations 
– we’ve seen this already 

– depends on how good we are at Boolean 
simplification 

• Canonical forms 
– standard forms for a Boolean expression 

– we all come up with the same expression 
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Sum-of-products canonical forms 

• Also known as disjunctive normal form 

• Also known as minterm expansion 
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A B C F F’ 
0 0 0 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 0 

F = 

F’ = A’B’C’ + A’BC’ + AB’C’ 

F =  001      011      101       110       111 
 

+ A’BC + AB’C + ABC’ + ABC A’B’C 

Sum-of-products canonical form 
(cont’d) 

• Product term (or minterm) 

– ANDed product of literals – input combination for which output is true 

– each variable appears exactly once, true or inverted (but not both) 
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short-hand notation for 

minterms of 3 variables 

A B C minterms 

0 0 0 A’B’C’ m0 

0 0 1 A’B’C m1 

0 1 0 A’BC’ m2 

0 1 1 A’BC m3 

1 0 0 AB’C’ m4 

1 0 1 AB’C m5 

1 1 0 ABC’ m6 

1 1 1 ABC m7 

F in canonical form: 

 F(A, B, C) = m(1,3,5,6,7) 

  =  m1 + m3 + m5 + m6 + m7 

  =  A’B’C + A’BC + AB’C + ABC’ + ABC 

 

canonical form  minimal form 

 F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’  

= (A’B’ + A’B + AB’ + AB)C + ABC’ 

= ((A’ + A)(B’ + B))C + ABC’ 

= C + ABC’ 

= ABC’ + C 

  = AB + C 

Product-of-sums canonical form 

• Also known as conjunctive normal form 

• Also known as maxterm expansion 
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A B C F F’ 
0 0 0 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 0 

F =       000              010              100 

F = 

F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’) 

(A + B + C) (A + B’ + C) (A’ + B + C) 

Product-of-sums canonical form 
(cont’d) 

• Sum term (or maxterm) 

– ORed sum of literals – input combination for which output is false 

– each variable appears exactly once, true or inverted (but not both) 
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A B C maxterms 

0 0 0 A+B+C M0 

0 0 1 A+B+C’ M1 

0 1 0 A+B’+C M2 

0 1 1 A+B’+C’ M3 

1 0 0 A’+B+C M4 

1 0 1 A’+B+C’ M5 

1 1 0 A’+B’+C M6 

1 1 1 A’+B’+C’ M7 

short-hand notation for 

maxterms of 3 variables 

F in canonical form: 

 F(A, B, C) = M(0,2,4) 

  =  M0 • M2 • M4 

  =  (A + B + C) (A + B’ + C) (A’ + B + C) 

 

canonical form  minimal form 

 F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C) 

= (A + B + C) (A + B’ + C) 

   (A + B + C) (A’ + B + C) 

= (A + C) (B + C) 

S-o-P, P-o-S, and de Morgan’s theorem 

• Complement of function in sum-of-products form 
– F’ = A’B’C’ + A’BC’ + AB’C’ 

• Complement again and apply de Morgan’s and  
get the product-of-sums form 
– (F’)’ = (A’B’C’ + A’BC’ + AB’C’)’ 

– F = (A + B + C) (A + B’ + C) (A’ + B + C) 
 
 

• Complement of function in product-of-sums form 
– F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’) 

• Complement again and apply de Morgan’s and  
get the sum-of-product form 
– (F’)’ = ( (A + B + C’)(A + B’ + C’)(A’ + B + C’)(A’ + B’ + C)(A’ + B’ + C’) )’ 

– F = A’B’C + A’BC + AB’C + ABC’ + ABC 
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Predicate Calculus 

• Predicate or Propositional Function 

– A function that returns a truth value 

• “x is a cat” 

• “x is prime” 

• “student x has taken course y” 

• “x > y” 

• “x + y = z” 

 

 

Quantifiers 

•   x P(x) : P(x) is true for every x in the domain 

•   x P(x) : There is an x in the domain for 
which P(x) is true 

Statements with quantifiers 

•   x Even(x) 
 

•   x Odd(x) 
 

•   x (Even(x)  Odd(x)) 
 

•   x (Even(x)  Odd(x)) 
 

•   x Greater(x+1, x) 
 

•   x (Even(x)  Prime(x)) 

Even(x) 

Odd(x) 

Prime(x) 

Greater(x,y) 

Equal(x,y) 

Domain: 

Positive Integers 

Statements with quantifiers 

•  x  y Greater (y, x) 
 

•  x  y Greater (x, y) 
 

•  x  y (Greater(y, x)  Prime(y)) 
 

•  x (Prime(x)  (Equal(x, 2)  Odd(x)) 
 

•  x  y(Equal(x, y + 2)  Prime(x)  Prime(y))  
 

Even(x) 

Odd(x) 

Prime(x) 

Greater(x,y) 

Equal(x,y) 

Domain: 

Positive Integers 

Statements with quantifiers 

• “There is an odd prime” 

 

• “If x is greater than two, x is not an even prime” 

 

• xyz ((Equal(z, x+y)  Odd(x)  Odd(y)) Even(z)) 

 

• “There exists an odd integer that is the sum of two primes” 

Even(x) 

Odd(x) 

Prime(x) 

Greater(x,y) 

Equal(x,y) 

Domain: 

Positive Integers 

Goldbach’s Conjecture  

• Every even integer greater than two can be 
expressed as the sum of two primes 

Even(x) 

Odd(x) 

Prime(x) 

Greater(x,y) 

Equal(x,y) 

Domain: 

Positive Integers 


