
CSE 311 Foundations of
Computing I

Lecture 5, Boolean Logic and
Predicates

Autumn 2011

Autumn 2011 CSE 311 1

Announcements

• Reading assignments

– Boolean Algebra

• 12.1 – 12.3 7th Edition

• 11.1 – 11.3 6th Edition

• 10.1 – 10.3 5th Edition

– Predicates and Quantifiers

• 1.4, 1.5 7th Edition

• 1.3, 1.4 5th and 6th Edition

Autumn 2011 CSE 311 2

Highlights from last lecture

• Boolean algebra to circuit design

• Boolean algebra
– a set of elements B = {0, 1}
– binary operations { + , • }
– and a unary operation { ’ }
– such that the following axioms hold:

 1. the set B contains at least two elements: a, b

2. closure: a + b is in B a • b is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a’ = 1 a • a’ = 0

Autumn 2011 CSE 311 3

George Boole – 1854

A simple example: 1-bit binary adder

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out

Autumn 2011 CSE 311 4

A

B

Cin
Cout

S
A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = B Cin + A Cin + A B

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin
 = A’ (B’ Cin + B Cin’) + A (B’ Cin’ + B Cin)

 = A’ Z + A Z’
 = A xor Z = A xor (B xor Cin)

A A A A A

B B B B B

S S S S S

Cin Cout

Preview: A 2-bit ripple-carry adder

Autumn 2011 CSE 311 5

A1 B1

Cout Cin

Sum1

A

Sum

Cout Cin

B

1-Bit Adder

A2 B2

Sum2

Cout Cin 0

A

B

Cin
Sum

A

B

A

Cin

B

Cin

Cout

Mapping truth tables to logic gates
• Given a truth table:

1. Write the Boolean expression
2. Minimize the Boolean expression
3. Draw as gates
4. Map to available gates

Autumn 2011 CSE 311 6

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1 F = A’BC’+A’BC+AB’C+ABC

 = A’B(C’+C)+AC(B’+B)

 = A’B+AC

notA

B

A

C

F
F

notA

B

A

C

1

2

3

4

Canonical forms

• Truth table is the unique signature of a Boolean
function

• The same truth table can have many gate
realizations
– we’ve seen this already

– depends on how good we are at Boolean
simplification

• Canonical forms
– standard forms for a Boolean expression

– we all come up with the same expression

Autumn 2011 CSE 311 7

Sum-of-products canonical forms

• Also known as disjunctive normal form

• Also known as minterm expansion

Autumn 2011 CSE 311 8

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F’ = A’B’C’ + A’BC’ + AB’C’

F = 001 011 101 110 111

+ A’BC + AB’C + ABC’ + ABC A’B’C

Sum-of-products canonical form
(cont’d)

• Product term (or minterm)

– ANDed product of literals – input combination for which output is true

– each variable appears exactly once, true or inverted (but not both)

Autumn 2011 CSE 311 9

short-hand notation for

minterms of 3 variables

A B C minterms

0 0 0 A’B’C’ m0

0 0 1 A’B’C m1

0 1 0 A’BC’ m2

0 1 1 A’BC m3

1 0 0 AB’C’ m4

1 0 1 AB’C m5

1 1 0 ABC’ m6

1 1 1 ABC m7

F in canonical form:

 F(A, B, C) = m(1,3,5,6,7)

 = m1 + m3 + m5 + m6 + m7

 = A’B’C + A’BC + AB’C + ABC’ + ABC

canonical form  minimal form

 F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’

= (A’B’ + A’B + AB’ + AB)C + ABC’

= ((A’ + A)(B’ + B))C + ABC’

= C + ABC’

= ABC’ + C

 = AB + C

Product-of-sums canonical form

• Also known as conjunctive normal form

• Also known as maxterm expansion

Autumn 2011 CSE 311 10

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F = 000 010 100

F =

F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

(A + B + C) (A + B’ + C) (A’ + B + C)

Product-of-sums canonical form
(cont’d)

• Sum term (or maxterm)

– ORed sum of literals – input combination for which output is false

– each variable appears exactly once, true or inverted (but not both)

Autumn 2011 CSE 311 11

A B C maxterms

0 0 0 A+B+C M0

0 0 1 A+B+C’ M1

0 1 0 A+B’+C M2

0 1 1 A+B’+C’ M3

1 0 0 A’+B+C M4

1 0 1 A’+B+C’ M5

1 1 0 A’+B’+C M6

1 1 1 A’+B’+C’ M7

short-hand notation for

maxterms of 3 variables

F in canonical form:

 F(A, B, C) = M(0,2,4)

 = M0 • M2 • M4

 = (A + B + C) (A + B’ + C) (A’ + B + C)

canonical form  minimal form

 F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

= (A + B + C) (A + B’ + C)

 (A + B + C) (A’ + B + C)

= (A + C) (B + C)

S-o-P, P-o-S, and de Morgan’s theorem

• Complement of function in sum-of-products form
– F’ = A’B’C’ + A’BC’ + AB’C’

• Complement again and apply de Morgan’s and
get the product-of-sums form
– (F’)’ = (A’B’C’ + A’BC’ + AB’C’)’

– F = (A + B + C) (A + B’ + C) (A’ + B + C)

• Complement of function in product-of-sums form
– F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

• Complement again and apply de Morgan’s and
get the sum-of-product form
– (F’)’ = ((A + B + C’)(A + B’ + C’)(A’ + B + C’)(A’ + B’ + C)(A’ + B’ + C’))’

– F = A’B’C + A’BC + AB’C + ABC’ + ABC

Autumn 2011 CSE 311 12

Predicate Calculus

• Predicate or Propositional Function

– A function that returns a truth value

• “x is a cat”

• “x is prime”

• “student x has taken course y”

• “x > y”

• “x + y = z”

Quantifiers

•  x P(x) : P(x) is true for every x in the domain

•  x P(x) : There is an x in the domain for
which P(x) is true

Statements with quantifiers

•  x Even(x)

•  x Odd(x)

•  x (Even(x)  Odd(x))

•  x (Even(x)  Odd(x))

•  x Greater(x+1, x)

•  x (Even(x)  Prime(x))

Even(x)

Odd(x)

Prime(x)

Greater(x,y)

Equal(x,y)

Domain:

Positive Integers

Statements with quantifiers

•  x  y Greater (y, x)

•  x  y Greater (x, y)

•  x  y (Greater(y, x)  Prime(y))

•  x (Prime(x)  (Equal(x, 2)  Odd(x))

•  x  y(Equal(x, y + 2)  Prime(x)  Prime(y))

Even(x)

Odd(x)

Prime(x)

Greater(x,y)

Equal(x,y)

Domain:

Positive Integers

Statements with quantifiers

• “There is an odd prime”

• “If x is greater than two, x is not an even prime”

• xyz ((Equal(z, x+y)  Odd(x)  Odd(y)) Even(z))

• “There exists an odd integer that is the sum of two primes”

Even(x)

Odd(x)

Prime(x)

Greater(x,y)

Equal(x,y)

Domain:

Positive Integers

Goldbach’s Conjecture

• Every even integer greater than two can be
expressed as the sum of two primes

Even(x)

Odd(x)

Prime(x)

Greater(x,y)

Equal(x,y)

Domain:

Positive Integers

