## CSE 311 Foundations of Computing I

Lecture 4, Boolean Logic
Autumn 2011

Autumn 2011
CSE 311

## Announcements

- Homework 2
- Available for download
- Reading assignments
- Boolean Algebra
- 12.1-12.3 $7^{\text {th }}$ Edition
- 11.1 - $11.36^{\text {th }}$ Edition
- 10.1-10.3 $5^{\text {th }}$ Edition
- Predicates and Quantifiers
- $1.47^{\text {th }}$ Edition
- $1.35^{\text {th }}$ and $6^{\text {th }}$ Edition
$\qquad$ CSE 311


## Ugrad Autumn Career Events

We strongly urge all CSE undergrads to attend our first two CSE Autumn Career Events. These events feature vital employment information for all future CSE job seekers. (Note: for CSE majors only.)

## Event 1: Employer Panel

Date/Time: Wednesday, October 5, 2010 5:30-6:30pm
Place: EE125
Our first career event of autumn will provide an overview of the job search process from both the CSE student and employer perspective.

Event 2: Resume Review Roundtable Workshop
Date/Time: Tuesday, October 11, 3:00-6:00 pm Place: CSE Atrium
In this workshop, HR reps, recruiters and engineers sit with small groups of CSE students to critique resumes, offer suggestions, and help refine the way you present yourself on paper.

Autumn 2011

## A quick combinational logic example

- Calendar subsystem: number of days in a month (to control watch display)
- used in controlling the display of a wrist-watch LCD screen
- inputs: month, leap year flag
- outputs: number of days
A quick combinational logic example
- Calendar subsystem: number of days in a
month (to control watch display)
- used in controlling the display of a wrist-watch
LCD screen
- inputs: month, leap year flag
- outputs: number of days
Autumn2011


## Boolean logic

- Combinational logic
- output ${ }_{t}=F$ input $_{t}$ )
- Sequential logic
- output $=$ F(output ${ }_{t-1}$, input ${ }_{t}$ )
- output dependent on history
- concept of a time step (clock)
- An algebraic structure consists of
- a set of elements $B=\{0,1\}$
- binary operations $\{+, \bullet\}$ (OR, AND)
- and a unary operation \{'\} (NOT )


## Implementation in software

```
integer number_of_days ( month, leap_year_flag) {
    switch (month) {
            case 1: return (31);
            case 2: if (leap_year_flag == 1) then
            return (29) else return (28);
            case 3: return (31);
            ..
            case 12: return (31);
            default: return (0);
    }
}
```

| month | leap | d28 |  |  |  |  | d29 | d30 | d31 |
| :---: | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 0000 | - | - | - |  |  |  |  |  |  |
| 0001 | - | 0 | 0 | 0 | 1 |  |  |  |  |
| 0010 | 0 | 1 | 0 | 0 | 0 |  |  |  |  |
| 0010 | 1 | 0 | 1 | 0 | 0 |  |  |  |  |
| 0011 | - | 0 | 0 | 0 | 1 |  |  |  |  |
| 0100 | - | 0 | 0 | 1 | 0 |  |  |  |  |
| 0101 | - | 0 | 0 | 0 | 1 |  |  |  |  |
| 0110 | - | 0 | 0 | 1 | 0 |  |  |  |  |
| 0111 | - | 0 | 0 | 0 | 1 |  |  |  |  |
| 1000 | - | 0 | 0 | 0 | 1 |  |  |  |  |
| 1001 | - | 0 | 0 | 1 | 0 |  |  |  |  |
| 1010 | - | 0 | 0 | 0 | 1 |  |  |  |  |
| 1011 | - | 0 | 0 | 1 | 0 |  |  |  |  |
| 11100 | - | 0 | 0 | 0 | 1 |  |  |  |  |
| 1101 | - | - | - | - | - |  |  |  |  |
| 1110 | - | - | - | - | - |  |  |  |  |
| 1111 | - | - | - | - | - |  |  |  |  |
|  |  |  |  |  | 7 |  |  |  |  |

## Combinational example (cont'd)

$\mathrm{d} 28=\mathrm{m} 8^{\prime} \cdot \mathrm{m} 4^{\prime} \cdot \mathrm{m} 2 \cdot \mathrm{~m} 1^{\prime} \cdot$ leap ${ }^{\prime}$
$\mathrm{d} 29=\mathrm{m} 8^{\prime} \cdot \mathrm{m} 4^{\prime} \cdot \mathrm{m} 2 \cdot \mathrm{~m} 1^{\prime} \cdot$ leap
$\mathrm{d} 30=\left(\mathrm{m} 8^{\prime} \cdot \mathrm{m} 4 \bullet \mathrm{~m} 2^{\prime} \cdot \mathrm{m} 1^{\prime}\right)+\left(\mathrm{m} 8^{\prime} \cdot \mathrm{m} 4 \bullet \mathrm{~m} 2 \cdot \mathrm{~m} 1^{\prime}\right)+$ $\left(\mathrm{m} 8 \cdot \mathrm{~m} 4^{\prime} \cdot \mathrm{m} 2^{\prime} \cdot \mathrm{m} 1\right)+\left(\mathrm{m} 8 \cdot \mathrm{~m} 4^{\prime} \cdot \mathrm{m} 2 \cdot \mathrm{~m} 1\right)$
$=\left(m 8^{\prime} \cdot m 4 \bullet m 1^{\prime}\right)+\left(m 8 \bullet m 4{ }^{\prime} \bullet m 1\right)$
$\mathrm{d} 31=\left(\mathrm{m} 8^{\prime} \cdot \mathrm{m} 4^{\prime} \cdot \mathrm{m} 2^{\prime} \cdot \mathrm{m} 1\right)+\left(m 8^{\prime} \cdot m 4^{\prime} \cdot m 2 \cdot m 1\right)+$ $\left(\mathrm{m} 8^{\prime} \cdot \mathrm{m} 4 \cdot \mathrm{~m}^{\prime} \cdot \mathrm{m} 1\right)+\left(\mathrm{m} 8^{\prime} \cdot \mathrm{m} 4 \cdot \mathrm{~m} 2 \cdot \mathrm{~m} 1\right)+$ $\left(m 8 \cdot m 4^{\prime} \cdot \mathrm{m} 2^{\prime} \cdot \mathrm{m} 1^{\prime}\right)+\left(m 8 \cdot m 4^{\prime} \cdot \mathrm{m} 2 \bullet m 1^{\prime}\right)+$ (m8•m4•m2'•m1')


Autumn 2011
 9

## Combinational example (cont'd)

- Truth-table to logic to switches to gates
- $\mathrm{d} 28=$ " 1 when month=0010 and leap=0"
- d28 $=m 8^{\prime} \cdot m 4^{\prime} \cdot m 2 \bullet m 1^{\prime} \cdot l$ leap ${ }^{\prime}$
$-\mathrm{d} 31=$ " 1 when month=0001 or month=0011 or $\ldots$ month=1100"
- d31 $=\left(m 8^{\prime} \cdot m 4^{\prime} \cdot m 2^{\prime} \cdot m 1\right)+\left(m 8^{\prime} \cdot m 4^{\prime} \cdot m 2 \cdot m 1\right)+.$.
( $\mathrm{m} 8 \bullet \mathrm{~m} 4 \bullet \mathrm{~m}^{\prime} \cdot \mathrm{ml}^{\prime}$ )
- d31 = can we simplify more?

|  | month | leap | d28 |  |  |  |  | d29 | d30 | d31 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 0000 | - | - | - | - |  |  |  |  |  |  |
| 0001 | - | 0 | 0 | 0 | 1 |  |  |  |  |  |
| 0010 | 0 | 1 | 0 | 0 | 0 |  |  |  |  |  |
| 0010 | 1 | 0 | 1 | 0 | 0 |  |  |  |  |  |
| 0011 | - | 0 | 0 | 0 | 1 |  |  |  |  |  |
| 0100 | - | 0 | 0 | 1 | 0 |  |  |  |  |  |
| $\ldots 100$ | - | 0 | 0 | 0 | 1 |  |  |  |  |  |
| 1101 | - | - | - | - | - |  |  |  |  |  |
| $111-$ | - | - | - | - | - |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Autumn 2011

## Combinational logic

- Switches
- Basic logic and truth tables
- Logic functions
- Boolean algebra
- Proofs by re-writing and by perfect induction

Switches: basic element of physical implementations

- Implementing a simple circuit (arrow shows action if wire changes to " 1 "):

close switch (if A is "1" or asserted) and turn on light bulb ( $Z$ )

open switch (if $A$ is " 0 " or unasserted) and turn off light bulb (Z)

$$
Z \equiv A
$$

Autumn 2011
CSE 311

## Switches (cont'd)

- Compose switches into more complex ones (Boolean functions):


OR


Autumn 2011
CSE 311

## Transistor networks

- Modern digital systems are designed in CMOS technology
- MOS stands for Metal-Oxide on Semiconductor
-C is for complementary because there are both normally-open and normally-closed switches
- MOS transistors act as voltage-controlled switches
- similar, though easier to work with than relays.

Autumn 2011

## Possible logic functions of two variables

- There are 16 possible functions of 2 input variables:
- in general, there are $2^{* *}\left(2^{* *} n\right)$ functions of $n$ inputs



Autumn 2011
CSE 311

## Boolean algebra

- An algebraic structure consists of
- a set of elements B
- binary operations $\{+, \bullet\}$
- and a unary operation \{' $\}$
- such that the following axioms hold:

1. the set $B$ contains at least two elements: $a, b$
2. closure:
3. commutativity:
4. associativity:
5. identity:
6. identity:
7. distributivity
8. complementarity:
$a+b$ is in $B$
$a+(b+c)=(a+b)+c$
$a+(b+c)=(a+b)+c$
$a+0=a$
$a+(b \cdot c)=(a+b) \cdot(a+c)$
$a+a^{\prime}=1$

CSE 311
$a \cdot b$ is in $B$
$a \bullet b=b \cdot a$
$a \cdot b=b \cdot a$
$a \cdot(b \cdot c)=(a \cdot b) \cdot c$
$a \cdot 1=a$
$a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
$a \cdot a^{\prime}=0$
$a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
$a \cdot a^{\prime}=0$

## Logic functions and Boolean algebra

## Axioms and theorems of Boolean algebra

> Any logic function that can be expressed as a truth table can be written as an
> expression in Boolean algebra using the operators: ', +, and $\bullet$
> $\mathrm{X}, \mathrm{Y}$ are Boolean algebra variables

```
identity
1. }x+0=
                                    1D. }x\cdot1=
2. }x+1=
                                    2D. }x\cdot0=
idempotency:
                                    3D. X - X = X
3. X+X=x
involution:
    4. }(\mp@subsup{X}{}{\prime}\mp@subsup{)}{}{\prime}=
complementarity:
    5. }x+\mp@subsup{x}{}{\prime}=
                                    5D. x}\cdotx=
commutatively:
    6. X+Y=Y+X 6D. X P Y Y P X
associativity:
7. (X+Y)+Z = X + (Y+Z)
7D. (X P Y) \bullet Z = X (Y P Z)
distributivity:
8. X•(Y+Z)=(X P Y) +(X P Z)
    8D. X+(Y - Z)=(X+Y) • (X + Z)
```

Autumn 2011

## Axioms and theorems of Boolean algebra (cont'd)

uniting:

```
9. X}\bulletY+X\bullet\mp@subsup{Y}{}{\prime}=
absorption:
    10. X+X P Y = X
    11. (X+Y') \bullet Y = X \bullet Y
factoring:
```



```
        X}\cdot\textrm{Z}+\mp@subsup{X}{}{\prime}\cdot
consensus:
```



```
        X}\cdotY+\mp@subsup{X}{}{\prime}\bullet
de Morgan's:
14. (X+Y + ...) = X' • Y' \bullet ...
    9D. (X+Y) • (X+Y')=X
    10D. }X\cdot(X+Y)=
        11D. }(X\cdot\mp@subsup{Y}{}{\prime})+Y=X+
        (X+Z)}\bullet(\mp@subsup{X}{}{\prime}+Y
                                13D. (X+Y) • (Y+Z) • (X' +Z)=
        (X+Y)}\cdot(\mp@subsup{X}{}{\prime}+Z
14D. (X P Y \bullet...) ' = X' + Y' + ..
generalized de Morgan's:
    15. f'( (X, , X , .., Xn,0,1,+,\bullet) = f( }\mp@subsup{X}{1}{\prime},\mp@subsup{X}{2}{\prime},\ldots,\mp@subsup{X}{n}{\prime},1,0,\bullet,+
Autumn 2011
    CSE 311
```


## Proving theorems (rewriting)

- Using the laws of Boolean algebra:
- e.g., prove the theorem:
$X \cdot Y+X \cdot Y^{\prime}=X$

| distributivity (8) | $X \bullet Y+X \bullet Y^{\prime}$ | $=X \bullet\left(Y+Y^{\prime}\right)$ |
| :--- | ---: | :--- |
| complementarity (5) |  | $=X \bullet(1)$ |
| identity (1D) |  | $=X$ |

identity (1D)
$=X$
e.g., prove the theorem: $X+X \cdot Y=X$

| identity (1D) | $X+X \bullet Y$ |
| :--- | :--- |
| distributivity (8) |  |
|  | $=X \bullet 1+X \cdot Y$ |
| identity (2) |  |
| identity (1D) |  |
|  |  |
|  |  |
|  |  |

Autumn 2011
CSE 311

## A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out


$S=A^{\prime} B^{\prime} C i n+A^{\prime} B C i n '+A B^{\prime} C i n '+A B C i n$ Cout $=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$

Apply the theorems to simplify expressions

- The theorems of Boolean algebra can simplify expressions
- e.g., full adder's carry-out function

Cout $=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
$=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n+A B C i n+A B C i n-$
$=A^{\prime} B C i n+A B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
$=\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n$
$=$ (1) $B C i n+A B^{\prime} C i n+A B C i n \prime+A B C i n$
$=B C i n+A B^{\prime} C i n+A B C i n '+A B C i n+A B C i n$
$=B C i n+A B^{\prime} C i n+A B C i n+A B C i n ' t A B C i n$
$=B C i n+A\left(B^{\prime}+B\right) C i n+A B C i n+A B C i n$
$=B C i n+A(1) C i n+A B C i n+A B C i n$
$=B C i n+A C i n+A B\left(\mathrm{Cin}^{\prime}+C i n\right)$
$=B C i n+A C i n+A B(1)$
adding extra terms
Autumn 2011
$=B C i n+A C i n+A B$
adding extra terms
CSE 311
opportunities ${ }_{23}$

A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out


Autumn 2011

Cout $=\mathrm{BCin}+\mathrm{ACin}+\mathrm{AB}$
$S=A^{\prime} B^{\prime} C i n+A^{\prime} B C i n '+A B^{\prime} C i n '+A B C i n$ $=A^{\prime}\left(B^{\prime} C i n+B C i n^{\prime}\right)+A\left(B^{\prime} C i n^{\prime}+B C i n\right)$ $=A^{\prime} Z+A Z$
$=A \operatorname{xor} Z=A \operatorname{xor}(B \operatorname{xor} C i n)$


$$
\text { CSE } 311
$$

CSE 311




## Canonical forms

- Truth table is the unique signature of a Boolean function
- The same truth table can have many gate realizations
- we've seen this already
- depends on how good we are at Boolean simplification
- Canonical forms
- standard forms for a Boolean expression
- we all come up with the same expression

Autumn 2011
CSE 311
31


## Product-of-sums canonical form

- Also known as conjunctive normal form
- Also known as maxterm expansion



## S-o-P, P-o-S, and de Morgan's theorem

- Complement of function in sum-of-products form - $F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$
- Complement again and apply de Morgan's and
get the product-of-sums form
$-\left(F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}$
$-F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
- Complement of function in product-of-sums form
$-F^{\prime}=\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)$
- Complement again and apply de Morgan's and get the sum-of-product form
- $\left(F^{\prime}\right)^{\prime}=\left(\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\right)^{\prime}$
$-F=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C$

