CSE 311 Foundations of Computing I

Autumn 2011, Lecture 3
Propositional Logic, Proofs, Predicate Calculus

Highlights of week 1

- Predicate calculus
- Basic logical connectives
- If pigs can whistle, then horses can fly

Combinational Logic Circuits

Design a 3 input circuit to compute the majority of 3 . Output 1 if at least two inputs are 1 , output 0 otherwise

What about a majority of 5 circuit?

Administrative

- Course web:
http://www.cs.washington.edu/311
- Homework, Lecture slides, Office Hours ...
- Homework:
- Due Wednesday at the start of class
- Paul Beame is travelling this week - so Richard Anderson will cover both lectures

Logical equivalence

- Terminology: A compound proposition is a
- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false
$p \vee \neg p$
$p \oplus p$
$(p \rightarrow q) \wedge p$
$(p \wedge q) \vee(p \wedge \neg q) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q)$

Logical Equivalence

- p and q are logically equivalent iff $p \leftrightarrow q$ is a tautology - i.e. p and q have the same truth table
- The notation $p \equiv q$ denotes p and q are logically equivalent
- Example: $p \equiv \neg \neg p$

De Morgan's Laws

- $\neg(p \wedge q) \equiv \neg p \vee \neg q$
- $\neg(\mathrm{p} \vee \mathrm{q}) \equiv \neg \mathrm{p} \wedge \neg \mathrm{q}$
- What are the negations of:
- The Yankees and the Phillies will play in the World Series
- It will rain today or it will snow on New Year's Day

Law of Implication

Example: $(p \rightarrow q) \equiv(\neg p \vee q)$

Understanding connectives

- Reflect basic rules of reasoning and logic
- Allow manipulation of logical formulas
- Simplification
- Testing for equivalence
- Applications
- Query optimization
- Search optimization and caching
- Artificial Intelligence
- Program verification

De Morgan's Laws

Example: $\neg(p \wedge q) \equiv(\neg p \vee \neg q)$

\qquad

Properties of logical connectives

- Identity
- Domination
- Idempotent
- Commutative
- Associative
- Distributive
- Absorption
- Negation

Equivalences relating to implication

- $p \rightarrow q \equiv \neg p \vee q$
- $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- $\mathrm{p} \vee \mathrm{q} \equiv \neg \mathrm{p} \rightarrow \mathrm{q}$
- $p \wedge q \equiv \neg(p \rightarrow \neg q)$
- $p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
- $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
- $p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q)$
- $\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Logical Proofs

- To show P is equivalent to Q
- Apply a series of logical equivalences to subexpressions to convert P to Q
- To show P is a tautology
- Apply a series of logical equivalences to subexpressions to convert P to T

Show $(p \wedge q) \rightarrow(p \vee q)$ is a tautology

Show $(p \rightarrow q) \rightarrow r$ and $p \rightarrow(q \rightarrow r)$ are not equivalent

Quantifiers

- $\forall x P(x): P(x)$ is true for every x in the domain
- $\exists x P(x)$: There is an x in the domain for which $P(x)$ is true

Statements with quantifiers

- $\exists x \operatorname{Even}(x)$
- $\forall x \operatorname{Odd}(x)$
- $\forall x(\operatorname{Even}(x) \vee \operatorname{Odd}(x))$
- $\exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$
- $\forall x \operatorname{Greater}(x+1, x)$
- $\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$

Statements with quantifiers

- $\forall x \exists y \operatorname{Greater}(y, x)$
- $\forall x \exists y$ Greater (x, y)

Domain: Positive Integers

Even (x) $\operatorname{Odd}(x)$
Prime (x)
Greater (x, y) Equal (x, y)

- $\forall x \exists y(\operatorname{Greater}(y, x) \wedge \operatorname{Prime}(y))$
- $\forall x(\operatorname{Prime}(x) \rightarrow(\operatorname{Equal}(x, 2) \vee \operatorname{Odd}(x))$
- $\exists x \exists y($ Equal $(x, y+2) \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y))$

Goldbach's Conjecture

- Every even integer greater than two can be expressed as the sum of two primes

