CSE 311 Foundations of Computing I

Autumn 2011
Lecture 2
More Propositional Logic
Application: Circuits
Propositional Equivalence

Administrative

- Course web: http://www.cs.washington.edu/311
 - Homework, Lecture slides, Office Hours ...
- Office Hours: starting today
- · Homework:
 - Paper turn-in (stapled) handed in at the start of class on due date (Wednesday).
 - No on-line turn-in.
 - Individual.
 - OK to discuss with a couple of others but nothing recorded from discussion and write-up done much later

Administrative

- · Coursework and grading
 - Weekly written homework ~ 45-50 %
 - Midterm (November 4) ~ 15-20%
 - Final (December 12) ~ 30-35%
- A note about Extra Credit problems
 - Not required to get a 4.0
 - Recorded separately and grades calculated entirely without it
 - Fact that others do them can't lower your score
 - In total may raise grade by 0.1 (occasionally 0.2)
 - Each problem ends up worth less than required ones

RecallCo	nnectives
<i>p</i> ¬ <i>p</i> T	<i>p</i>
NOT	F T F
	AND
$\begin{array}{c cccc} p & q & p \lor q \\ \hline T & T & T \\ \end{array}$	$\begin{array}{c cccc} p & q & p \oplus q \\ \hline T & T & F \end{array}$

	р	q	$p \rightarrow q$
$\rightarrow q$			
•			
	<u> </u>		

- Implication
 - p implies q
 - whenever p is true q must be true

p

- if p then q
- -q if p
- -p is sufficient for q
- -p only if q

"If you behave then I'll buy you ice cream"

• What if you don't behave?

"If pigs can whistle then horses can fly"

Converse, Contrapositive, Inverse

• Implication: $p \rightarrow q$

• Converse: $q \rightarrow p$

• Contrapositive: $\neg q \rightarrow \neg p$

• Inverse: $\neg p \rightarrow \neg q$

· Are these the same?

Biconditional $p \leftrightarrow q$

- p iff q
- p is equivalent to q
- p implies q and q implies p

р	q	p ↔ q

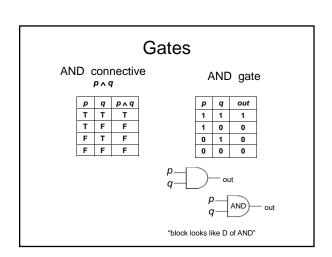
English and Logic

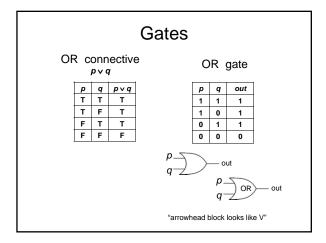
- You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old
 - q: you can ride the roller coaster
 - r. you are under 4 feet tall
 - s: you are older than 16

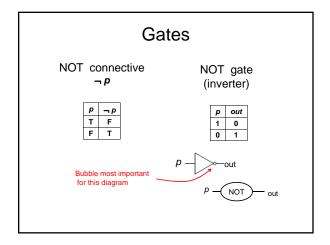
 $(r \land \neg s) \rightarrow \neg q$

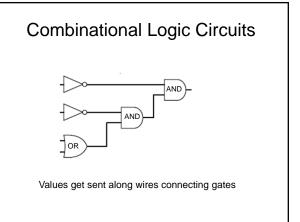
Digital Circuits

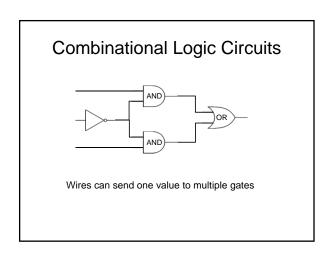
- Computing with logic
 - -T corresponds to 1 or "high" voltage
 - F corresponds to 0 or "low" voltage
- Gates
 - Take inputs and produce outputs
 - Functions
 - Several kinds of gates
 - Correspond to propositional connectives
 - Only symmetric ones (order of inputs irrelevant)











Logical equivalence

- Terminology: A compound proposition is a
 - Tautology if it is always true
 - Contradiction if it is always false
 - Contingency if it can be either true or false

pv¬p

 $p \oplus p$

 $(p \rightarrow q) \wedge p$

 $(p \land q) \lor (p \land \neg \ q) \lor (\neg \ p \land q) \lor (\neg \ p \land \neg \ q)$

Logical Equivalence

- p and q are logically equivalent iff $p \leftrightarrow q$ is a tautology i.e. p and q have the same truth table
- The notation *p* ≡ *q* denotes *p* and *q* are logically equivalent
- Example: $p \equiv \neg \neg p$

р	¬ p	$\neg \neg p$	$p \leftrightarrow \neg \neg p$

De Morgan's Laws

•
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

•
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

- What are the negations of:
 - The Yankees and the Phillies will play in the World Series
 - It will rain today or it will snow on New Year's Day

De Morgan's Laws

Example: $\neg (p \land q) \equiv (\neg p \lor \neg q)$

р	q	¬ p	¬ q	$\neg p \lor \neg q$	p ^ q	¬(p ∧ q)	$\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$
Т	Т						
Т	F						
F	Т						
F	F						

Law of Implication

Example: $(p \rightarrow q) \equiv (\neg p \lor q)$

р	q	$p \rightarrow q$	¬ p	$\neg p \lor q$	$(p \rightarrow q) \leftrightarrow (\neg p \lor q)$

Computing equivalence

- Describe an algorithm for computing if two logical expressions/circuits are equivalent
- What is the run time of the algorithm?

Understanding connectives

- Reflect basic rules of reasoning and logic
- · Allow manipulation of logical formulas
 - Simplification
 - Testing for equivalence
- Applications
 - Query optimization
 - Search optimization and caching
 - Artificial Intelligence
 - Program verification

Properties of logical connectives

- Identity
- Domination
- Idempotent
- Commutative
- Associative
- Distributive
- Absorption
- Negation

Equivalences relating to implication

•
$$p \rightarrow q \equiv \neg p \lor q$$

•
$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

•
$$p \lor q \equiv \neg p \rightarrow q$$

•
$$p \land q \equiv \neg (p \rightarrow \neg q)$$

•
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

•
$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

•
$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

•
$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Logical Proofs

- To show P is equivalent to Q
 - Apply a series of logical equivalences to subexpressions to convert P to Q
- To show P is a tautology
 - Apply a series of logical equivalences to subexpressions to convert P to T

Show
$$(p \land q) \rightarrow (p \lor q)$$
 is a tautology

Show
$$(p \rightarrow q) \rightarrow r$$
 and $p \rightarrow (q \rightarrow r)$ are not equivalent