1. Composing relations:

Recall: $S \circ R=\{(a, c) \mid \exists b$ s.t. $(a, b) \in R$ and $(b, c) \in S\}$
We define the following relations:

- $(a, b) \in$ Sibling: b is a 's sibling
- $(a, b) \in$ Daughter: b is a 's daughter
- $(a, b) \in$ Mother: b is a 's mother
- $(a, b) \in$ Son: b is a 's son
- $(a, b) \in$ Parent: b is a 's parent
- $(a, b) \in$ Child: b is a 's child

Use these relations to express the following:
(a) $\{(a, c) \mid c$ is a 's niece $\}:$ Daughter \circ Sibling
(b) $\{(a, c) \mid c$ is a 's grandson $\}:$ Son \circ Child
(c) $\{(a, c) \mid c$ is a 's grandmother $\}:$ Mother \circ Parent
2. Proving relationship properties

Prove that the relation R on a set A is symmetric if and only if $R=R^{-1}$.
For an "if and only if" proof we need to prove both directions:
(a) "only if' direction: Prove that if R is symmetric, then $R=R^{-1}$

Assume that R is symmetric.
To show that $R=R^{-1}$, we must show both directions:

- Show that $R \subseteq R^{-1}$

Let (x, y) be an arbitrary member of R. Then:
$(y, x) \in R \quad$ because R is symmetric
$(x, y) \in R^{-1} \quad$ by definition of inverse
$Q E D$

- Show that $R^{-1} \subseteq R$

Let (x, y) be an arbitrary member of R^{-1}. Then:
$(y, x) \in R \quad$ by definition of inverse
$(x, y) \in R \quad$ because R is symmetric
$Q E D$
We have shown by direct proof that if R is symmetric then $R=R^{-1}$
(b) "if" direction: Prove that if $R=R^{-1}$, then R is symmetric

Assume $R=R^{-1}$. To show that R is symmetric, we must show that for any arbitrary (x, y) in $R,(y, x)$ is also in R.

Let (x, y) be an arbitrary member of R.
$(y, x) \in R^{-1} \quad$ by definition of inverse
$(y, x) \in R \quad$ by assumption that $R=R^{-1}$ $Q E D$

We have shown by direct proof that if $R=R^{-1}$, then R is symmetric.
We have shown both the "if" and "only if" directions. Therefore, we have proven that the relation R on a set A is symmetric if and only if $R=R^{-1}$.

