Quiz Section, November 17, 2011: Selected answers

1. Composing relations:

Recall: $S \circ R = \{(a, c) \mid \exists b \text{ s.t.}(a, b) \in R \text{ and } (b, c) \in S\}$

We define the following relations:

• $(a, b) \in \text{Sibling}$: b is a's sibling

• $(a,b) \in Mother: b \text{ is } a$'s mother

• $(a,b) \in \text{Parent: } b \text{ is } a \text{'s parent}$

• $(a, b) \in \text{Daughter}$: b is a's daughter

• $(a, b) \in \text{Son: } b \text{ is } a \text{'s son}$

• $(a,b) \in \text{Child}$: b is a's child

Use these relations to express the following:

(a) $\{(a,c) \mid c \text{ is } a \text{'s niece}\}$: Daughter \circ Sibling

(b) $\{(a,c) \mid c \text{ is } a \text{ 's grandson}\}: Son \circ Child$

(c) $\{(a,c) \mid c \text{ is } a \text{'s grandmother}\}$: $Mother \circ Parent$

2. Proving relationship properties

Prove that the relation R on a set A is symmetric if and only if $R = R^{-1}$.

For an "if and only if" proof we need to prove both directions:

(a) "only if' direction: Prove that if R is symmetric, then $R = R^{-1}$

Assume that R is symmetric.

To show that $R = R^{-1}$, we must show both directions:

• Show that $R \subseteq R^{-1}$

Let (x, y) be an arbitrary member of R. Then:

 $(y,x) \in R$ because R is symmetric

 $(x,y) \in R^{-1}$ by definition of inverse QED

• Show that $R^{-1} \subseteq R$

Let (x, y) be an arbitrary member of R^{-1} . Then:

 $(y,x) \in R$ by definition of inverse

 $(x,y) \in R$ because R is symmetric

QED

We have shown by direct proof that if R is symmetric then $R = R^{-1}$

(b) "if" direction: Prove that if $R = R^{-1}$, then R is symmetric

Assume $R = R^{-1}$. To show that R is symmetric, we must show that for any arbitrary (x, y) in R, (y, x) is also in R.

Let (x,y) be an arbitrary member of R. $(y,x)\in R^{-1}$ by definition of inverse $(y,x)\in R$ by assumption that $R=R^{-1}$ QED

We have shown by direct proof that if $R = R^{-1}$, then R is symmetric.

We have shown both the "if" and "only if" directions. Therefore, we have proven that the relation R on a set A is symmetric if and only if $R = R^{-1}$.