Homework Review

- Homework 6, Problem 1

Prove that $f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}$ when n is a positive integer.

- Homework 6, Problem 4

Give a recursive definition of the set of bit strings that have the same number of zeros and ones.

New Stuff

1. Regular Expressions

Express each of these sets using a regular expression:
(a) The set of strings of odd length
(b) The set of strings ending in 1 and not containing 000
(c) The set of strings containing a string of 1's such that the number of 1's equals 2 mod 3 , followed by an even number of 0's.
(d) The set of binary strings with an equal number of 1's and 0's
2. Context Free Grammars

Give a grammar for each of these languages:
(a) The set of all strings containing an equal number of 0's and 1's
(b) The set of all strings containing more 0's than 1's
(c) The set of all strings containing more 1's than 0's
(d) The set of all strings containing an unequal number of 0 's and 1 's
3. CFGs for Combined Languages (Problem \#21: Section 13.1 in 7th, 12.1 in 6th)

Let G_{1} and G_{2} be context-free grammars, generating the languages $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ respectively. Show that there is a CFG generating each of the following:
(a) $L\left(G_{1}\right) \cup L\left(G_{2}\right)$
(b) $L\left(G_{1}\right) L\left(G_{2}\right)$
(c) $L\left(G_{1}\right)^{*}$

