University of Washington Department of Computer Science and Engineering CSE 311, Autumn 2011

Quiz Section, October 27, 2011

Homework Review

- 1. Which, if any, of the following assumptions implies that A = B for all sets A, B, and C?
 - (a) $A \cup C = B \cup C$.
 - (b) $A \cap C = B \cap C$.
 - (c) Both $A \cup C = B \cup C$ and $A \cap C = B \cap C$.
- 2. $E_7^3 = \{x \mid x \equiv 3 \pmod{7}\}$ and $E_{21}^{10} = \{x \mid x \equiv 10 \pmod{21}\}$. Prove $E_{21}^{10} \subseteq E_7^3$.

New Stuff

- 1. Modular inverses
 - (a) Find an inverse of 3 modulo 7
 - (b) Find an inverse of 8 modulo 3
 - (c) Find an inverse of 12 modulo 5
- 2. Prime factorization

Find the prime factorization of the following:

- (a) 88
- (b) 10!
- 3. Induction
 - (a) Seventh Edition: 5.1.11 Sixth Edition: 4.1.11.
 - i. Find a formula for

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$$

by examining the values of this expression for small values of n.

- ii. Prove the formula you conjectured in part (a).
- (b) Seventh Edition: 5.1.21 Sixth Edition: 4.1.21. Prove that $2^n > n^2$ if n is an integer greater than 4.
- (c) Seventh Edition: 5.1.31 Sixth Edition: 4.1.31. Prove using induction that 2 divides $n^2 + n$ whenever n is a positive integer. Bonus: Can you prove this result without using induction?

Template for proofs by induction: "Proof"

- Define P(N) and b:
 "By induction we will show that P(n) = ______ is true for every n >= _____."
- 2. Prove P(b):
 "Base Case: P(____) is true, because:

3. State the inductive hypothesis

"Inductive Hypothesis: Assume that P(k) is true for some arbitrary integer $k \ge 1$.

"

"

That is, assume that ______."

4. Inductive Step: State the goal and then use the inductive hypothesis to reach it"Inductive Step: We must show that if we assume P(k) is true, then P(k+1) is also true.

That is, we must show that _____

Now show it. Use the goal to figure out what you need. Make sure you are using I.H. and point out where you are using it. (Dont assume P(k+1)):

5. Conclusion:

[&]quot;We have completed the basis step and the inductive step. Therefore by mathematical induction, P(n) is true for all $n \ge$ ____."