CSE311: Quiz Section, 10/6/2011

October 6, 2011

- 1. Possibly helpful tools on the textbook website, www.mhhe.com/rosen (7th Edition, "Student Edition")
 - Interactive Demonstration Applets
 - Truth Tables
 - Equivalences
 - Self Assessments
 - Conditional Statements
 - Quantified Statements
 - Guide to Writing Proofs
 - Common Mistakes
- 2. Prove that $(p \to r) \land (q \to r) \equiv (p \lor q) \to r$ by rewriting with equivalences.
- 3. Prove that $(p \land q) \to (p \to q)$ is a tautology by rewriting with equivalences.
- 4. Find the values, if any , of the Boolean variable ${\bf x}$ that satisfies these equations:
 - (a) $x \cdot 1 = 0$

(c) $x \cdot 1 = x$

(b) x + x = 0

- (d) $x \cdot \bar{x} = 1$
- 5. Use truth tables to express the values of these Boolean functions:
 - (a) $F(x, y, z) = \overline{xy} + \overline{xz}$
 - (b) $F(x, y, z) = \bar{y}(xz + \bar{x}\bar{z})$
- 6. For a Boolean function on each of the following number of inputs:
 - How many rows are in the truth table?
 - How many different Boolean functions are possible?
 - 3 inputs ("a Boolean function of degree 3")
 - 4 inputs

-30 inputs

7. Half adder

- (a) Write the truth table for a half adder (takes two bits, x and y, and outputs two bits s (sum) and c (carry):
- (b) Use the truth table to write the boolean expressions for outputs s and c. (Don't minimize.)
- (c) How many gates will you need in a circuit that implements these expressions?
- (d) Draw the circuit.
- (e) Minimize the expression for output s. Now how many gates do you need?
- (f) Draw the simplified circuit.
- 8. Repeat the steps from the above problem (using t as the single output value) for the Boolean function given by the following truth table:

x	y	z	t
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0