CSE311: Quiz Section, 10/6/2011

October 12, 2011

- 1. Possibly helpful tools on the textbook website, www.mhhe.com/rosen (7th Edition, "Student Edition")
 - Interactive Demonstration Applets
 - Truth Tables
 - Equivalences
 - Self Assessments
 - Conditional Statements
 - Quantified Statements
 - Guide to Writing Proofs
 - Common Mistakes
- 2. Prove that $(p \to r) \land (q \to r) \equiv (p \lor q) \to r$ by rewriting with equivalences.

$$\begin{array}{ll} (p \to r) \wedge (q \to r) \equiv (p \vee q) \to r \\ & \equiv \neg (p \vee q) \vee r & \text{Law of implication} \\ & \equiv (\neg p \wedge \neg q) \vee r & \text{DeMorgan's} \\ & \equiv (\neg p \vee r) \wedge (\neg q \vee r) & \text{Distributive} \\ & \equiv (p \to r) \wedge (q \to r) & \text{Law of implication} \end{array}$$

3. Prove that $(p \land q) \to (p \to q)$ is a tautology by rewriting with equivalences.

$$\begin{array}{ll} (p \wedge q) \rightarrow (p \rightarrow q) \equiv T \\ \neg (p \wedge q) \vee (p \rightarrow q) & \text{Law of implication} \\ \neg (p \wedge q) \vee (\neg p \vee q) & \text{Law of implication} \\ (\neg p \vee \neg q) \vee (\neg p \vee q) & \text{DeMorgan} \\ \neg p \vee \neg q \vee \neg p \vee q & \text{Associative} \\ \neg p \vee \neg q \vee q \vee \neg p & \text{Commutative} \\ \neg p \vee T \vee \neg p & \text{Negation} \\ \neg p \vee T & \text{Domination} \\ T & \text{Domination} \end{array}$$

4. Find the values, if any , of the Boolean variable ${\bf x}$ that satisfies these equations:

(a)
$$x \cdot 1 = 0$$
 0

(c)
$$x \cdot 1 = x$$
 0, 1

(b)
$$x + x = 0$$
 0

(d)
$$x \cdot \bar{x} = 1$$
 none

- 5. Use truth tables to express the values of these Boolean functions:
 - (a) $F(x, y, z) = \overline{xy} + \overline{xz}$

a	c	y	z	xy	xz	\overline{xy}	\overline{xz}	$\overline{xy} + \overline{xz}$
()	0	0	0	0	1	1	1
()	0	1	0	0	1	1	1
()	1	0	0	0	1	1	1
()	1	1	0	0	1	1	1
1	L	0	0	0	0	1	1	1
1	L	0	1	0	1	1	0	1
1	L	1	0	1	0	0	1	1
_1	L	1	1	1	1	0	0	0

(b) $F(x, y, z) = \bar{y}(xz + \bar{x}\bar{z})$

x	y	z	\overline{x}	\overline{y}	\overline{z}	xz	$\bar{x}\bar{z}$	$xz + \bar{x}\bar{z}$	$\bar{y}(xz+\bar{x}\bar{z})$
0	0	0	1	1	1	0	1	1	1
0	0	1	1	1	0	0	0	0	0
0	1	0	1	0	1	0	1	1	0
0	1	1	1	0	0	0	0	0	0
1	0	0	0	1	1	0	0	0	0
1	0	1	0	1	0	1	0	1	1
1	1	0	0	0	1	0	0	0	0
1	1	1	0	0	0	1	0	1	0

- 6. For a Boolean function on each of the following number of inputs:
 - How many rows are in the truth table?
 - How many different Boolean functions are possible?
 - 3 inputs ("a Boolean function of degree 3") 8 rows; 2^8 functions
 - -4 inputs 16 rows; 2^{16} functions
 - -30 inputs 2^{30} rows; $2^{(2^{30})}$ (about 2^{billion}) functions

In general for n variables there are 2^n rows and $2^{(2^n)}$ possible functions.

- 7. Half adder
 - (a) Write the truth table for a half adder (takes two bits, x and y, and outputs two bits s (sum) and c (carry):

\boldsymbol{x}	y	s	c
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(b) Use the truth table to write the boolean expressions for outputs s and c. (Don't minimize.)

$$s=\bar{x}y+x\bar{y}$$

$$c = xy$$

- (c) How many gates will you need in a circuit that implements these expressions? 6 gates: 3 AND, 1 OR, 2 NOT
- (d) Draw the circuit.

- (e) Minimize the expression for s. Now how many gates do you need? $s = (x + y)\overline{xy}$; 4 gates: 2 AND, 1 OR, 1 NOT (Notice that we can reuse the xy AND gate.)
- (f) Draw the simplified circuit.

Note: All of the above was done with just AND, OR and NOT gates. If we allow XOR gates, then we can have a much simpler circuit with just 2 gates (1 XOR, 1 AND):

$$c = xy$$
 $s = x \oplus y$

8. Repeat the steps from the above problem (using t as the single output value) for the Boolean function given by the following truth table:

x	y	z	t
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

- (a) Use the truth table to write the boolean expression for t: $t = xyz + \bar{x}yz$
- (b) How many gates would you need for this circuit? 4: 2 AND, 1 OR, 1 NOT
- (c) Draw the circuit:

- (d) Minimize the expression for t. Now how many gates do you need?: t=yz; just 1 ADD gate
- (e) Draw the simplified circuit:

