CSE311: Quiz Section, 10/6/2011

October 12, 2011

1. Possibly helpful tools on the textbook website, www.mhhe.com/rosen (7th Edition, "Student Edition")

- Interactive Demonstration Applets
- Truth Tables
- Equivalences
- Self Assessments
- Conditional Statements
- Quantified Statements
- Guide to Writing Proofs
- Common Mistakes

2. Prove that $(p \rightarrow r) \wedge(q \rightarrow r) \equiv(p \vee q) \rightarrow r$ by rewriting with equivalences.

$$
\begin{array}{rlr}
(p \rightarrow r) \wedge(q \rightarrow r) & \equiv(p \vee q) \rightarrow r & \\
& \equiv \neg(p \vee q) \vee r & \text { Law of implication } \\
& \equiv(\neg p \wedge \neg q) \vee r & \text { DeMorgan's } \\
& \equiv(\neg p \vee r) \wedge(\neg q \vee r) & \text { Distributive } \\
& \equiv(p \rightarrow r) \wedge(q \rightarrow r) & \text { Law of implication }
\end{array}
$$

3. Prove that $(p \wedge q) \rightarrow(p \rightarrow q)$ is a tautology by rewriting with equivalences.

$$
\begin{array}{rr}
(p \wedge q) \rightarrow(p \rightarrow q) \equiv T & \\
\neg(p \wedge q) \vee(p \rightarrow q) & \text { Law of implication } \\
\neg(p \wedge q) \vee(\neg p \vee q) & \text { Law of implication } \\
(\neg p \vee \neg q) \vee(\neg p \vee q) & \text { DeMorgan } \\
\neg p \vee \neg q \vee \neg p \vee q & \text { Associative } \\
\neg p \vee \neg q \vee q \vee \neg p & \text { Commutative } \\
\neg p \vee T \vee \neg p & \text { Negation } \\
\neg p \vee T & \text { Domination } \\
T & \text { Domination }
\end{array}
$$

4. Find the values, if any, of the Boolean variable x that satisfies these equations:
(a) $x \cdot 1=0 \quad \mathbf{0}$
(c) $x \cdot 1=x \quad \mathbf{0 , 1}$
(b) $x+x=0 \quad 0$
(d) $x \cdot \bar{x}=1$ none
5. Use truth tables to express the values of these Boolean functions:
(a) $F(x, y, z)=\overline{x y}+\overline{x z}$

x	y	z	$x y$	$x z$	$\overline{x y}$	$\overline{x z}$	$\overline{x y}+\overline{x z}$
0	0	0	0	0	1	1	1
0	0	1	0	0	1	1	1
0	1	0	0	0	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	0	1	1	1
1	0	1	0	1	1	0	1
1	1	0	1	0	0	1	1
1	1	1	1	1	0	0	0

(b) $F(x, y, z)=\bar{y}(x z+\bar{x} \bar{z})$

x	y	z	\bar{x}	\bar{y}	\bar{z}	$x z$	$\bar{x} \bar{z}$	$x z+\bar{x} \bar{z}$	$\bar{y}(x z+\bar{x} \bar{z})$
0	0	0	1	1	1	0	1	1	1
0	0	1	1	1	0	0	0	0	0
0	1	0	1	0	1	0	1	1	0
0	1	1	1	0	0	0	0	0	0
1	0	0	0	1	1	0	0	0	0
1	0	1	0	1	0	1	0	1	1
1	1	0	0	0	1	0	0	0	0
1	1	1	0	0	0	1	0	1	0

6. For a Boolean function on each of the following number of inputs:

- How many rows are in the truth table?
- How many different Boolean functions are possible?
-3 inputs ("a Boolean function of degree 3") 8 rows; 2^{8} functions
- 4 inputs 16 rows; 2^{16} functions
-30 inputs 2^{30} rows; $2^{\left(2^{30}\right)}$ (about $2^{\text {billion }}$) functions
In general for n variables there are 2^{n} rows and $2^{\left(2^{n}\right)}$ possible functions.

7. Half adder
(a) Write the truth table for a half adder (takes two bits, x and y, and outputs two bits - s (sum) and c (carry):

x	y	s	c
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(b) Use the truth table to write the boolean expressions for outputs s and c. (Don't minimize.)
$s=\bar{x} y+x \bar{y}$
$c=x y$
(c) How many gates will you need in a circuit that implements these expressions? 6 gates: 3 AND, 1 OR, 2 NOT
(d) Draw the circuit.

(e) Minimize the expression for s. Now how many gates do you need? $s=(x+y) \overline{x y} ; \quad 4$ gates: 2 AND, 1 OR, 1 NOT (Notice that we can reuse the $x y$ AND gate.)
(f) Draw the simplified circuit.

Note: All of the above was done with just AND, OR and NOT gates. If we allow XOR gates, then we can have a much simpler circuit with just 2 gates (1 XOR, 1 AND):

$$
\begin{aligned}
& c=x y \\
& s=x \oplus y
\end{aligned}
$$

8. Repeat the steps from the above problem (using t as the single output value) for the Boolean function given by the following truth table:

x	y	z	t
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

(a) Use the truth table to write the boolean expression for t :
$t=x y z+\bar{x} y z$
(b) How many gates would you need for this circuit?

4: 2 AND, 1 OR, 1 NOT
(c) Draw the circuit:

(d) Minimize the expression for t. Now how many gates do you need?:
$t=y z$; just 1 ADD gate
(e) Draw the simplified circuit:

