University of Washington Department of Computer Science and Engineering CSE 311, Autumn 2011

Homework 4, Due Wednesday, October 26, 2011

Problem 1:

Suppose that $\mathcal{P}(A) = \mathcal{P}(B)$. Show that A = B.

Problem 2:

Suppose that $C \neq \emptyset$ and $A \times C = B \times C$. Show that A = B. Why do we need the assumption that $C \neq \emptyset$?

Problem 3:

Which, if any, of the following assumptions implies that A = B for all sets A, B, and C? Justify your answers.

- (a) $A \cup C = B \cup C$.
- (b) $A \cap C = B \cap C$.
- (c) Both $A \cup C = B \cup C$ and $A \cap C = B \cap C$.

Problem 4:

Prove that if n is an integer then $n^2 \mod 5$ is either 0, 1, or 4.

Problem 5:

Let a, b be integers and c, n be positive integers. Prove that if $a \equiv b \pmod{n}$ then $ac \equiv bc \pmod{cn}$.

Problem 6:

Let $E_7^3 = \{x \mid x \equiv 3 \pmod{7}\}$ and $E_{21}^{10} = \{x \mid x \equiv 10 \pmod{21}\}$. Prove $E_{21}^{10} \subseteq E_7^3$.

Problem 7:

For each $a \in \{1, ..., 10\}$ determine the smallest $k \ge 1$ such that $a^k \mod 11 = 1$.

Problem 8:

How many multiplications are needed to compute $37^{1000} \mod 10000$ using the fast modular exponentiation algorithm? (You do not need to compute $37^{1000} \mod 10000$, just determine the number of multiplications and justify your answer.)

Extra Credit 9:

- (a) Use a formula for the unsigned decimal expansion of integers to justify the "casting out nines" rule that a positive number is divisible by 9 if and only if repeatedly adding its digits gives 9. (For example, the digit sum for 729 is 18 which has digit sum 9.)
- (b) Do the same for the "casting out threes" rule which says that a number is divisible by 3 if and only if the final digit sum is one of 3, 6, or 9.