
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 6 – Utilities and Shell Wrap-Up

Outline

  What we have done so far

-  Linux model

-  Shell programming

-  Regular expression

  Plan for this lecture

-  Utility 1: sed

-  Utility 2: awk

-  Another useful utility: find (will not cover in class)

  Example: find . -name “*.txt”

-  Shell wrap-up and where to go from here

2 CSE 303 - Winter 2010

Automating File Editing

  We have learned how to automate various simple
tasks involving file manipulation and program
execution

  But how about:

-  Automating file editing

-  Simplifying repetitive edits to multiple files

  Typical example: search and replace in many files

-  Writing a conversion program (HW2, Problem 2)

  Sed: simple utility program that can help us

3 CSE 303 - Winter 2010

The Sed Editor

  Sed is a non interactive editor that interprets and
performs the actions in a script

  Sed is stream-oriented

-  Input comes from file or from stdin

-  Input flows through program

-  Output goes to stdout

4 CSE 303 - Winter 2010

How Sed Works

  Sed edits a file one line at the time

  Each line is copied into a pattern space

  All editing commands are then applied...

-  On the data in the pattern space

-  One after the other, in sequence

  Hence, original input does not change

  Possible to restrict edits to subset of lines

5 CSE 303 - Winter 2010

Command-Line Syntax

  Method 1: One-line syntax

sed [options] 'command' file(s)

sed -e 'command1' -e 'command2' file(s)

  Method 2: Scriptfile (not taught in this class)

sed [options] -f scriptfile file(s)

6 CSE 303 - Winter 2010

Search and Replace with Sed

  Simple most common use

sed 's/pattern/replacement/g' file

  Meaning: “Replace every (longest) substring that
matches pattern with replacement.”

  Common variations for search and replace

- Omit g: replaces only first match
- sed -n: suppresses normal output

 Add p where you normally put g to print
the lines that match pattern

7 CSE 303 - Winter 2010

More About Substitution

  Examples

sed 's/a/b/g' ex1.txt

sed -n 's/a/b/2p' ex1.txt

sed -e 's/a/b/g' -e 's/b/c/g' ex1.txt

  Additional examples (using regexps)

sed 's/.*Linux.*/\&:/' ex2.txt

sed 's/.*Linux \(.*\) .*/\1:/' ex2.txt

  Newline note: the \n is not in the matched text and
is (re)-added when printed

8 CSE 303 - Winter 2010

Editing Subset of Lines

  General syntax of sed commands

[address[,address]][!]command[arguments]

  Delete lines 3-5: sed '3,5 d' ex3.c

  Delete lines that do not say SAVE

sed '/SAVE/! d' ex3.c

  Delete all lines that start with //

sed '/\/\// d' ex3.c

  Remove all lines between /* and */

sed '/\/*/,/*\// d' ex3.c

9 CSE 303 - Winter 2010

Advanced Features

  Commands so far: substitute, print, delete

  Other commands (not shown in this class)

-  append, replace with block, insert, translate

-  branch to label

-  multi-line patterns

-  The hold space for fancy editing

  Example: copy and paste lines

  Honestly... if you need these, it might be better to
use Perl or Python

10 CSE 303 - Winter 2010

Awk

  Awk is a pattern-matching program for processing
text files composed of records separated by some
delineator

-  Default delineator: newline character

-  Records contain fields (default separator space)

  Usage

-  Generate a report from logs

-  Processing results from experiment

11 CSE 303 - Winter 2010

Command-Line Syntax

  Method 1: One-line syntax

awk [options] 'script' file(s)

  Useful variant

Change the field separator from space to c

awk -F c 'script' file(s)

  Method 2: Scriptfile (not taught in this class)

awk [options] -f scriptfile file(s)

12 CSE 303 - Winter 2010

Basic Functionality

  Script consists of pattern { procedure }

  Awk processes a file one record at the time

  For each record

-  Access fields with $1,...$n

-  Number of fields: NF

  Example: print only last and first fields

awk '{print $NF “ “ $1}' grades.txt

  Example: replace grades with average
awk '{print $1 “ “ ($2+$3)/2}' grades.txt

13 CSE 303 - Winter 2010

Using Patterns

  Can apply procedures only to records that match a
pattern. Examples:

awk '/Jane/{print $2}' grades.txt

awk '/Bob/, /Jane/ {print $0}' grades.txt

awk '$2 < 8 {print $0}' grades.txt

  BEGIN and END patterns serve to execute
operations before and after processing file

Example: compute class average on hw1
awk '{x+=$2; i++} END { print x/i}' grades.txt

  Can do pattern matching on fields as well

14 CSE 303 - Winter 2010

Advanced Features

  awk is quite a powerful scripting language

  Many features not covered in this class

-  Prog. language constructs: arrays, loops

-  Defining functions

-  Fancy printing with printf

-  Some math functions: cos(), rand()

  ... although once again, if you need all this, you
might want to use Perl or Python instead

15 CSE 303 - Winter 2010

Summary

  Bash scripts are powerful tools

  But they are also complex (intricate syntax)

  Lots of “tricks”

-  Typo in variable name creates a new variable: oops=7

-  Typo in variable use gives empty string: ls $oops

-  Omit subscript, get first element of array ${array}

-  Array-out-of-bounds

  On assignment, increases array size

  On use, returns the empty string

-  Be careful with spaces!

-  ... and many, many more gotchas
16 CSE 303 - Winter 2010

Bottom Line

  Never do something manually if writing a script
would save you time

-  Simple shell scripts can do powerful operations

-  Other utility programs help even further

  Never write a script if you need a large, robust
piece of software

  Some programming languages (Python or Perl) try
to give you the “best of both worlds”

  You now know two extremes that don't (Java and
bash)

17 CSE 303 - Winter 2010

Java vs Bash Programming

  Shell

(+) shorter, convenient file-access, file-tests, program
execution, pipes

(-) crazy quoting rules and ugly syntax

  Java

(+) cleaner, array-checking, type checking, etc.

(+) real data structures

(-) heavier weight

18 CSE 303 - Winter 2010

Where We Are and
Where We're Going

  We are done with Linux, shell, & utilities

-  You should now be comfortable performing simple
operations on Linux

-  After assignment 2, you should be comfortable writing
simple scripts and using simple utilities

  Where to go from here

-  Learn Python and/or Perl and/or Ruby

  Next time

-  Start to learn C

19 CSE 303 - Winter 2010

Python Example

#!/usr/bin/python
from sys import *
import Scientific.Statistics

inFile = open(argv[1])

Computes avg and stddev over all assignments
hw = []
for line in inFile.readlines():
 fields = line.split()
 for element in fields[1:]:
 hw.append(int(element))

print "Raw results: ", hw
avg=Scientific.Statistics.mean(hw)
stddev=Scientific.Statistics.standardDeviation(hw)
print "Avg: %.2f, stddev: %.2f" % (avg,stddev)

20 CSE 303 - Winter 2010

Readings

  Linux Pocket Guide

-  Section on More Powerful Manipulations (p80-81)

  Assignment 2 instructions point to online sed and
awk documentation

-  But you only need to know what we covered in lecture
today

-  Also: there will be no exam questions on awk

21 CSE 303 - Winter 2010

