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Outline 

  What we have done so far 

-  Linux model 

-  Shell programming 

-  Regular expression 

  Plan for this lecture 

-  Utility 1: sed 

-  Utility 2: awk 

-  Another useful utility: find (will not cover in class) 

  Example: find . -name “*.txt” 

-  Shell wrap-up and where to go from here 
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Automating File Editing 

  We have learned how to automate various simple 
tasks involving file manipulation and program 
execution 

  But how about: 

-  Automating file editing 

-  Simplifying repetitive edits to multiple files 

  Typical example: search and replace in many files 

-  Writing a conversion program (HW2, Problem 2) 

  Sed: simple utility program that can help us 
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The Sed Editor 

  Sed is a non interactive editor that interprets and 
performs the actions in a script 

  Sed is stream-oriented 

-  Input comes from file or from stdin 

-  Input flows through program 

-  Output goes to stdout 
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How Sed Works 

  Sed edits a file one line at the time 

  Each line is copied into a pattern space 

  All editing commands are then applied... 

-  On the data in the pattern space 

-  One after the other, in sequence 

  Hence, original input does not change 

  Possible to restrict edits to subset of lines 
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Command-Line Syntax 

  Method 1: One-line syntax 

sed [options] 'command' file(s) 

sed -e 'command1' -e 'command2' file(s) 

  Method 2: Scriptfile (not taught in this class) 

sed [options] -f scriptfile file(s) 
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Search and Replace with Sed 

  Simple most common use 

sed 's/pattern/replacement/g' file 

  Meaning: “Replace every (longest) substring that 
matches pattern with replacement.” 

  Common variations for search and replace 

- Omit g: replaces only first match 
- sed -n: suppresses normal output 

 Add p where you normally put g to print 
the lines that match pattern 
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More About Substitution 

  Examples 

sed 's/a/b/g' ex1.txt 

sed -n 's/a/b/2p' ex1.txt 

sed -e 's/a/b/g' -e 's/b/c/g' ex1.txt 

  Additional examples (using regexps) 

sed 's/.*Linux.*/\&:/' ex2.txt 

sed 's/.*Linux \(.*\) .*/\1:/' ex2.txt 

  Newline note: the \n is not in the matched text and 
is (re)-added when printed 
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Editing Subset of Lines 

  General syntax of sed commands 

[address[,address]][!]command[arguments] 

  Delete lines 3-5: sed '3,5 d' ex3.c 

  Delete lines that do not say SAVE 

sed '/SAVE/! d' ex3.c 

  Delete all lines that start with // 

sed '/\/\// d' ex3.c 

  Remove all lines between /* and */ 

sed '/\/\*/,/\*\// d' ex3.c 
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Advanced Features 

  Commands so far: substitute, print, delete  

  Other commands (not shown in this class) 

-  append, replace with block, insert, translate 

-  branch to label 

-  multi-line patterns 

-  The hold space for fancy editing 

  Example: copy and paste lines 

  Honestly... if you need these, it might be better to 
use Perl or Python 
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Awk 

  Awk is a pattern-matching program for processing 
text files composed of records separated by some 
delineator 

-  Default delineator: newline character 

-  Records contain fields (default separator space) 

  Usage 

-  Generate a report from logs 

-  Processing results from experiment 
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Command-Line Syntax 

  Method 1: One-line syntax 

awk [options] 'script' file(s) 

  Useful variant 

Change the field separator from space to c 

awk -F c 'script' file(s) 

  Method 2: Scriptfile (not taught in this class) 

awk [options] -f scriptfile file(s) 
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Basic Functionality 

  Script consists of  pattern { procedure } 

  Awk processes a file one record at the time 

  For each record 

-  Access fields with $1,...$n 

-  Number of fields: NF 

  Example: print only last and first fields 

awk '{print $NF “ “ $1}' grades.txt 

  Example: replace grades with average 
awk '{print $1 “ “ ($2+$3)/2}' grades.txt 
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Using Patterns 

  Can apply procedures only to records that match a 
pattern. Examples: 

awk '/Jane/{print $2}' grades.txt 

awk '/Bob/, /Jane/ {print $0}' grades.txt 

awk '$2 < 8 {print $0}' grades.txt 

  BEGIN and END patterns serve to execute 
operations before and after processing file 

Example: compute class average on hw1 
awk '{x+=$2; i++} END { print x/i}' grades.txt 

  Can do pattern matching on fields as well 
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Advanced Features 

  awk is quite a powerful scripting language 

  Many features not covered in this class 

-  Prog. language constructs: arrays, loops 

-  Defining functions 

-  Fancy printing with printf 

-  Some math functions: cos(), rand() 

  ... although once again, if you need all this, you 
might want to use Perl or Python instead 
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Summary 

  Bash scripts are powerful tools 

  But they are also complex (intricate syntax) 

  Lots of “tricks” 

-  Typo in variable name creates a new variable: oops=7 

-  Typo in variable use gives empty string: ls $oops 

-  Omit subscript, get first element of array ${array} 

-  Array-out-of-bounds  

  On assignment, increases array size 

  On use, returns the empty string 

-  Be careful with spaces! 

-  ... and many, many more gotchas 
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Bottom Line 

  Never do something manually if writing a script 
would save you time 

-  Simple shell scripts can do powerful operations 

-  Other utility programs help even further 

  Never write a script if you need a large, robust 
piece of software 

  Some programming languages (Python or Perl) try 
to give you the “best of both worlds” 

  You now know two extremes that don't (Java and 
bash) 
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Java vs Bash Programming 

  Shell 

(+) shorter, convenient file-access, file-tests, program 
execution, pipes 

(-) crazy quoting rules and ugly syntax 

  Java 

(+) cleaner, array-checking, type checking, etc. 

(+) real data structures 

(-) heavier weight 
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Where We Are and 
Where We're Going 

  We are done with Linux, shell, & utilities 

-  You should now be comfortable performing simple 
operations on Linux 

-  After assignment 2, you should be comfortable writing 
simple scripts and using simple utilities 

  Where to go from here 

-  Learn Python and/or Perl and/or Ruby 

  Next time 

-  Start to learn C 
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Python Example 

#!/usr/bin/python 
from sys import * 
import Scientific.Statistics 

inFile  = open(argv[1]) 

# Computes avg and stddev over all assignments 
hw = [] 
for line in inFile.readlines(): 
    fields = line.split() 
    for element in fields[1:]: 
        hw.append(int(element)) 

print "Raw results: ", hw 
avg=Scientific.Statistics.mean(hw) 
stddev=Scientific.Statistics.standardDeviation(hw) 
print "Avg: %.2f, stddev: %.2f" % (avg,stddev) 
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Readings 

  Linux Pocket Guide 

-  Section on More Powerful Manipulations (p80-81) 

  Assignment 2 instructions point to online sed and 
awk documentation  

-  But you only need to know what we covered in lecture 
today 

-  Also: there will be no exam questions on awk 
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