
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 26 – Threads and
Concurrency Control

Final Exam

  Monday, March 15th @ 8:30-10:20, MGH 241

  Content: Lecture 7 and following

  There will be questions about tools: svn, debugger, makefiles

  CLOSED book and closed notes

  EXCEPT for two 8.5’’x11’’ pages

  7pt font or higher or written manually

  Both sides

2 CSE 303 - Winter 2010

Motivation for Concurrency

  Imagine a software system such as a web server or a
database management system (DBMS)

  A Web server works as follows

-  Client requests a page (URL)

-  Web server locates and reads page from disk

-  Web server sends content of page back to client

  A DBMS works as follows

-  Client submits a query

-  DBMS reads from disk the data that satisfies the query

-  DBMS sends the data back to the client

3 CSE 303 - Winter 2010

How to Achieve High Performance?

  Many clients submit requests at the same time

  Approach 1: put requests in a queue and serve one request at
the time

-  But... reading data from disk is very slow

-  And while reading from disk, the CPU is idle

-  This is very slow, very inefficient. Can we do better?

  Approach 2: serve multiple requests simultaneously

-  While reading data from disk for one client

-  Start parsing request for second client

-  Send results from previous request to third client

-  Use multiple cores if available

-  All resources are fully utilized. This is much more efficient

4 CSE 303 - Winter 2010

Enabling Concurrency

  How to serve many requests at the same time?

  Design 1: Launch one process per client request

-  One web server process or one database system process

-  Each process has its own address space with a stack, a heap, code,
and global variables

-  OS takes turn running processes on processor(s)

-  Processes can communicate with each other (in our example they
communicate through the filesystem)

-  This approach is quite “heavyweight”

5 CSE 303 - Winter 2010

Enabling Concurrency

  How to serve many requests at the same time?

  Design 2: Launch one thread per client request

-  Launch a single process with multiple threads

-  Each thread has its own stack

-  A scheduler runs threads one-or-more at a time

-  This time, threads share an address space: same heap and same
global variables

-  This approach is more “lightweight”

6 CSE 303 - Winter 2010

Address Space of a Process

static data (globals)
(data segment)

code
(text segment)

stack

heap

One process with one thread

static data (globals)
(data segment)

code
(text segment)

stack for thread 1

heap

One process with two threads

stack for thread 2

Plan for Today

  Today, we will talk about writing programs with threads

-  What can go wrong?

-  How to avoid problems?

  Concurrency is a difficult concept

-  Focus on the key challenges and solutions

-  You do not need to learn the programming syntax

  In later classes

-  You will learn more about the tradeoffs between threads and
processes (and the history)

-  You will learn about design issues regarding how to leverage
concurrency (these are hard systems issues)

8 CSE 303 - Winter 2010

Pthreads

  In Java, syntax for threads is quite easy

-  You should learn it on your own

  In C, threads are messier and often not portable

  For UNIX systems, there exists a standardized C language
threads programming interface

  Implementations that adhere to this standard are referred to
as POSIX threads or Pthreads

  We will use Pthreads in our examples but

-  Concepts and principles are language independent

  Our first example: bank.cc

9 CSE 303 - Winter 2010

Creating a New Thread

  Initially, program comprises a single, default thread

  Other threads must be created explicitly

  Function: pthread_create

-  Creates a new thread and makes it executable

  Example from bank.cc

pthread_t spender_thread;

pthread_create(&spender_thread, // identifier

 NULL, // attributes

 spender, // start function

 (void*)p_nb_transfers // arguments

);

10 CSE 303 - Winter 2010

Creating a New Thread

  Arguments to pthread_create

-  thread: opaque, unique id for the new thread returned by the subroutine

-  attr: serves to specify thread attributes or NULL for the default values
(we will use NULL)

-  Example attribute is the thread max stack size

-  start_routine: the C function that the thread will execute once it is
created

-  arg: a single argument that may be passed to start_routine.

11 CSE 303 - Winter 2010

Terminating a Thread

  If process terminates, all threads terminate

  Can also terminate a single thread

-  By returning from start_routine

-  By calling pthread_exit explicitly inside the thread

-  By calling pthread_cancel from outside the thread

  It is possible to wait for a thread to terminate

-  By calling pthread_join

  Example bank.cc

12 CSE 303 - Winter 2010

Race Conditions

  Threads communicate through shared memory

  This makes communication nice and easy BUT

  This leads to a problem known as a race condition

-  Two threads can access the same memory at the same time, and at
least one access is a write

  Example: in bank.cc, simultaneous transfers by the two
threads can cause money to disappear

Thread 1
int a = x
a = 2*a

x = a

Thread 2
int a = x

a = 2*a

x = a

Value of X
10

20
20

13 CSE 303 - Winter 2010

Locking

  To avoid race conditions, typical solution is to use locks

  Lock is either available or held by a thread

  Before modifying a shared data item

-  A thread tries to acquire a lock

-  If lock is available, thread acquires and holds lock

-  Otherwise, thread blocks until lock is available

  After the modification, the thread releases the lock

-  Lock becomes available again

14 CSE 303 - Winter 2010

Locking Example

Thread 1
Lock X
int a = x
a = 2*a
x = a
Unlock X

Thread 2
Lock X -> Block

Lock X
int a = x
a = 2*a
x = a
Unlock X

Value of X
10

20

40

Pthread Mutexes

  With PThreads, special mutex variables are used for
locking. Mutex is an abbreviation for "mutual exclusion"

  Example from bank-fixed.cc:

pthread_mutex_t mutex_bank;
pthread_mutex_init(&mutex_bank, NULL);
 ...

pthread_mutex_lock (&mutex_bank);
// perform operations on bank accounts
// ...
pthread_mutex_unlock (&mutex_bank);
//...
pthread_mutex_destroy(&mutex_bank);

Only need to do once

For each access to data

When mutex is no longer
needed

16 CSE 303 - Winter 2010

Pthread Mutexes

  Note: with Pthreads, when multiple threads are waiting for
the same lock, there is no guarantee which thread will
acquire the lock next

  Notice the performance decrease once we added locks

17 CSE 303 - Winter 2010

More About Race Conditions

  Any one of the following is sufficient to avoid races

-  Keep data thread-local (keep data reachable only by one thread or at least
accessed only by one thread)

-  Keep data read-only (make your objects immutable)

-  Use locks consistently (always acquire a lock before accessing an object)

  Easy to forget about any of these and get bugs that are very
hard to reproduce

18 CSE 303 - Winter 2010

Deadlocks

  Locks reduce concurrency

-  Because threads must wait for each other

  To maximize concurrency, want to use 1 lock/data item

-  Threads that access different data items can then still run in parallel
by acquiring different locks

  But existence of multiple locks can cause deadlocks:

Thread 1
Lock X

Lock Y -> Block

Deadlock

Thread 2

Lock Y

Lock X -> Block
Deadlock

19 CSE 303 - Winter 2010

Avoiding Deadlocks

  Ensure that all threads acquire locks in the same order

  Deadlock examples:

-  bank-deadlock.cc and bank-nodeadlock.cc

  Famous deadlock example: dinning philosophers

  Can also use deadlock detection (e.g. database systems)

  Time-outs

  Wait-for graphs

20 CSE 303 - Winter 2010

Summary

  Multithreaded programming can improve performance

-  Helps keep resources busy

-  Can take advantage of existence of multiple processors

  Multithreaded programming is difficult

-  There are multiple stacks in one address space

-  There are potential races and deadlocks

-  Need to use locks carefully to avoid these problems

  A lot more to this topic than we have covered today

21 CSE 303 - Winter 2010

