CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010
Lecture 26 — Threads and
Concurrency Control



Final Exam

Monday, March 15" @ 8:30-10:20, MGH 241

Content: Lecture 7 and following

« There will be questions about tools: svn, debugger, makefiles

« CLOSED book and closed notes
« EXCEPT for two 8.5°x11” pages

« /pt font or higher or written manually
. Both sides



Motivation for Concurrency

. Imagine a software system such as a web server or a
database management system (DBMS)

« A Web server works as follows
- Client requests a page (URL)

- Web server locates and reads page from disk
- Web server sends content of page back to client

« A DBMS works as follows

- Client submits a query
- DBMS reads from disk the data that satisfies the query
- DBMS sends the data back to the client



How to Achieve High Performance?

« Many clients submit requests at the same time

« Approach 1: put requests in a queue and serve one request at
the time

- But... reading data from disk is very slow
- And while reading from disk, the CPU is idle

- This is very slow, very inefficient. Can we do better?

« Approach 2: serve multiple requests simultaneously
- While reading data from disk for one client
- Start parsing request for second client

- Send results from previous request to third client
- Use multiple cores if available

- All resources are fully utilized. This is much more efficient



Enabling Concurrency

. How to serve many requests at the same time?

« Design 1: Launch one process per client request

- One web server process or one database system process

- Each process has its own address space with a stack, a heap, code,
and global variables

- OS takes turn running processes on processor(s)

- Processes can communicate with each other (in our example they
communicate through the filesystem)

- This approach is quite “heavyweight”



Enabling Concurrency

. How to serve many requests at the same time?

« Design 2: Launch one thread per client request

- Launch a single process with multiple threads
- Each thread has its own stack
- A scheduler runs threads one-or-more at a time

- This time, threads share an address space: same heap and same
global variables

- This approach is more “lightweight”



Address Space of a Process

stack for thread 1
stack
l stack for thread 2
T |
| T
heap heap
static data (globals) static data (globals)
(data segment) (data segment)
code code
(text segment) (text segment)

One process with one thread One process with two threads



Plan for Today

. Today, we will talk about writing programs with threads

- What can go wrong?

- How to avoid problems?
« Concurrency is a difficult concept

- Focus on the key challenges and solutions

- You do not need to learn the programming syntax
« In later classes

- You will learn more about the tradeoffs between threads and
processes (and the history)

- You will learn about design issues regarding how to leverage
concurrency (these are hard systems issues)



Pthreads

In Java, syntax for threads is quite easy

- You should learn it on your own

In C, threads are messier and often not portable

For UNIX systems, there exists a standardized C language
threads programming interface

Implementations that adhere to this standard are referred to
as POSIX threads or Pthreads

We will use Pthreads in our examples but

- Concepts and principles are language independent
Our first example: bank. cc



Creating a New Thread

Initially, program comprises a single, default thread

« Other threads must be created explicitly

Function: pthread create

- Creates a new thread and makes it executable

. Example from bank.cc

pthread t spender thread;

pthread create(&spender thread, // identifier
NULL, // attributes
spender, // start function

(void*)p nb transfers // arguments

) ;



Creating a New Thread

« Arguments to pthread create

- thread: opaque, unique id for the new thread returned by the subroutine

- attr: serves to specify thread attributes or NULL for the default values
(we will use NULL)

- Example attribute is the thread max stack size

- start_routine: the C function that the thread will execute once it is
created

- arg: a single argument that may be passed to start_routine.



Terminating a Thread

If process terminates, all threads terminate

. Can also terminate a single thread

- By returning from start_routine
- By calling pthread exit explicitly inside the thread
- By calling pthread cancel from outside the thread

. Itis possible to wait for a thread to terminate

- By calling pthread join

Example bank.cc



Race Conditions

« Threads communicate through shared memory
. This makes communication nice and easy BUT

. This leads to a problem known as a race condition

- Two threads can access the same memory at the same time, and at
least one access is a write

Thread 1 Thread 2 Value of X
int a = x int a = x 10
a = 2%*a
a = 2*a
X = a 20
X = a 20

« Example: in bank. cc, simultaneous transfers by the two
threads can cause money to disappear



Locking

« To0 avoid race conditions, typical solution is to use locks
. Lock is either available or held by a thread

« Before modifying a shared data item

- A thread tries to acquire a lock
- If lock is available, thread acquires and holds lock

- Otherwise, thread blocks until lock is available
« After the modification, the thread releases the lock

- Lock becomes available again



Locking Example

Thread 1 Thread 2 Value of X
Lock X Lock X -=> Block 10
int a = x
a = 2*a
X = a 20
Unlock X
Lock X
int a = x
a = 2*a
X = a 40

Unlock X



Pthread Mutexes

« With PThreads, special mutex variables are used for
locking. Mutex is an abbreviation for "mutual exclusion”

« Example from bank-fixed.cc:

pthread mutex_t mutex_ bank;
pthread_mutex_init(&mutex_bank, NULL); — Only need to do once

pthread mutex_lock (&mutex_bank); For each access to data

// perform operations on bank accounts

/...

pthread _mutex_ unlock (&mutex_ bank);

/...

pthread_mutex_destroy(&mutex_bank); —\When mutex is no longer
needed



Pthread Mutexes

« Note: with Pthreads, when multiple threads are waiting for
the same lock, there is no guarantee which thread will

acquire the lock next

« Notice the performance decrease once we added locks



More About Race Conditions

« Any one of the following is sufficient to avoid races

- Keep data thread-local (keep data reachable only by one thread or at least
accessed only by one thread)

- Keep data read-only (make your objects immutable)

- Use locks consistently (always acquire a lock before accessing an object)

. Easy to forget about any of these and get bugs that are very
hard to reproduce



Deadlocks

. Locks reduce concurrency
- Because threads must wait for each other
« [0 maximize concurrency, want to use 1 lock/data item

- Threads that access different data items can then still run in parallel
by acquiring different locks

« But existence of multiple locks can cause deadlocks:

Thread 1 Thread 2
Lock X

Lock Y
Lock Y -> Block

Lock X —-> Block
Deadlock Deadlock



Avoiding Deadlocks

« Ensure that all threads acquire locks in the same order

. Deadlock examples:

- bank-deadlock.cc and bank-nodeadlock.cc

« Famous deadlock example: dinning philosophers

« Can also use deadlock detection (e.g. database systems)

« lime-outs

« Wait-for graphs



Summary

« Multithreaded programming can improve performance

- Helps keep resources busy

- Can take advantage of existence of multiple processors

« Multithreaded programming is difficult

- There are multiple stacks in one address space
- There are potential races and deadlocks

- Need to use locks carefully to avoid these problems

« A lot more to this topic than we have covered today



