
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 22 – Unit testing, stubs, and specifications

Where We Are

  Starting to learn basic software engineering

-  In hw4: learned to break system into components

-  Golden rule: write as little code as possible and test!

  Today: software development process

  In particular

-  Minimal specifications

-  Unit testing and stubs

2 CSE 303 - Winter 2010

Motivation

  If you are writing a tiny, simple piece of software for
yourself... you don't really need any process. You can
just start throwing some code together

  But what if you were in charge of writing the software
for a nuclear power plant?

-  You have 20 software developers to help you

-  How would you manage the overall project?

-  How would you go about figuring out what you are
supposed to develop?

-  How would you ensure that everyone knows what they
are supposed to do?

-  How would you organize everyone's efforts?

3 CSE 303 - Winter 2010

Software Development Process

  The software dev. process is there to guide you

  Main steps involved in building a system

-  Requirements analysis

-  Specification

-  Design (high-level then detailed)

-  Implementation

-  Testing

-  Documentation

-  Maintenance

4 CSE 303 - Winter 2010

Software Development Process

  Requirements analysis

-  What are we supposed to build? What do our
customers need?

  Specification

-  Precise description of provided functionality

-  How precise? Depends on what we are building

  Design (high-level then detailed)

-  Define the internal software architecture

-  Break system into components
  Modules, interfaces, classes, etc.

  Need to write specifications for each component
5 CSE 303 - Winter 2010

Software Development Process

  Implementation

-  Write the code and perform simple tests

  Testing

-  Extensive testing of components & whole system

  Documentation

-  All steps in the process must be documented

-  User guide, developer's guide, etc.

  Maintenance

-  Basically that means fixing bugs and working on
release 1256 of the same product

6 CSE 303 - Winter 2010

Software Development Process

  Main steps involved in building a system

-  Requirements analysis

-  Specification

-  Design

-  Implementation

-  Testing

-  Documentation

-  Maintenance

  Order of steps varies, cycles are possible and common

  How formal? Depends on what you're building

Remember: the software process
  Guides your efforts
  Helps you clarify your thoughts
  Helps you communicate your ideas
  It is there to help you!
  You can view it as kind of tool

7 CSE 303 - Winter 2010

Specification

  You need to write specs for entire software system
but also for each module

-  Man pages are basically specifications

  Writing a complete specification is often as difficult as
writing code (even worse when trying to be formal)

  But, partial specification is better than none

  Clear specification

-  Guides implementation, tests, integration, code reuse

-  Acts as a contract between client and implementor

  Iterating is normal: going back and fixing specs

8 CSE 303 - Winter 2010

Function Specification

  We will focus on function specifications

  Specification acts as a contract

-  If client meets its obligations (precondition)

-  Implementor meets its obligation (postcondition)

  Specification helps decoupling

-  Client need not know implementation details

-  Implementor can change implementation details

-  Implementor need not know details of how the function
will be used

-  Specifications should thus be declarative
  Describe what a function does but not how it does it

9 CSE 303 - Winter 2010

Specification Example

  Something simple like a linked list of strings

  Let's write an informal specification for

void insert(Node** head, char* val);

10 CSE 303 - Winter 2010

Specification First Attempt

/**
* Inserts a value into the list
* @param head address of pointer to
* the first element in the list
* @param val new string to insert
* @return nothing
*/
void insert(Node** head, char* val);

11 CSE 303 - Winter 2010

A Better Specification

/**
* Short description: Inserts a value into a list.
* Precondition:
* head must be valid address of pointer to beginning of list.
* List is sorted in alphabetical order.
* Postcondition:
* Modifies (*head).
* Inserts val into list pointed to by (*head)
* Does not check for duplicates.
* If val is NULL, does nothing
* Makes a copy of the inserted string.
* Output list is sorted in alphabetical order.
* @throw nothing (C++ only)
* @param head address of pointer to the first element in the list
* @param value string to insert into the list
* @return nothing
*/
void insert(Node** head, char* val);

12 CSE 303 - Winter 2010

Minimum Function Specification

  Short description: one line

  State precondition

-  Assumptions about the state of the system in which the
function can be called

  Ex: units are inches, list has no cycles, ...

-  In your code: never trust caller, check preconditions
  Sometimes, it does not make sense to check preconditions (e.g.,

cannot test that units are inches)

  State postcondition

-  What the function does when the precondition holds

13 CSE 303 - Winter 2010

Precondition

  Precondition is an obligation on the client (i.e., the caller of
the function)

-  If precondition is violated, the function is allowed to do
anything including setting the computer on fire

  Note: for invalid inputs, better to specify what the function
does in the postcondition rather than use preconditions

-  Example: when val is NULL, insert does nothing

-  Use the precondition only as a last resort

-  When it does not make sense to handle invalid inputs

  Ex: assume head holds a valid address

-  Sometimes, use precondition for performance too
  Ex: assumes input list is sorted

14 CSE 303 - Winter 2010

Postcondition

  Describe all input parameters (not really postcondition)

  Identify all objects that can potentially be modified

-  Gobal vars, data members, arguments

-  Sometimes this is called the “frame condition”

  Describe what the function does

-  Describe what the function returns
  Through return value or by modifying arguments

  Include any thrown exceptions (C++ only)

-  Describe all side effects

  Condition that will hold true after function execution

  Ex: how it modifies data members, what it writes to a file

15 CSE 303 - Winter 2010

Testing

  Goal: Verification and validation

-  Does the system work?

-  Does it do what it is supposed to do?

-  Increase our confidence in the system

  How do we know when we are done?

-  Standard coverage metrics
  Execute each statement at least once

  Execute each branch or path at least once

-  Rule of thumb: there are as many bugs left in the
system as you are still finding... never done

16 CSE 303 - Winter 2010

Two Basic Types of Tests

  Black box tests: very useful in practice!

-  Test without looking at implementation

-  Someone else than implementor shoud write them

-  Design test cases in terms of specification
  All tests must satisfy preconditions

  Divide inputs into equivalence classes

-  Need at least one test for each equivalence class
-  Also test boundaries of equivalence classes

17 CSE 303 - Winter 2010

Black Box Test Example

/**
* Precondition: none
* Postcondition:
* If x is greater than zero, returns the square

root of x. Otherwise, returns -1
* @param x the number for which to compute sqrt
* @return the square root of x or -1
*/
double sqrt(double x);

Some good tests: -20, -1, 0, 1, +20

Other tests: case where sqrt(x) < x, sqrt(x) > x, perfect squares, others

18 CSE 303 - Winter 2010

Two Basic Types of Tests

  White box tests

-  Take implementation into account

-  Easier to ensure good coverage

  All statements at least once (statement coverege)

  All branches at least once (decision coverage)

  All possible paths at least once (path coverage)

-  Common sense

  Try to test all branches at least once

19 CSE 303 - Winter 2010

More Types of Tests

  Unit testing

-  Test one or a few functions at the time

-  This is what you will do in hw6

  Integration testing

-  Combining units together

  System testing

-  The whole thing

  Perform them all as your develop the system

20 CSE 303 - Winter 2010

Hugely Important in Practice

  Regression tests

-  Whole battery of tests that exercise as many features
of the system as possible

-  Rerun all tests automatically
  Every time you add a feature

  Every time you fix a bug

  They help verify that everything still works

21 CSE 303 - Winter 2010

Stubs

  How to test a “unit” when the other code

-  Does not exist yet

-  Is buggy

-  Is large and slow

  Answer: create a “fake implementation” of the
missing pieces

-  Just good enough for the tests

-  As small as possible, so often called stub

22 CSE 303 - Winter 2010

Summary

  Software dev. involves a certain number of steps

-  Carefully think what you need to build

-  Carefully think how to build it

-  Prepare tests based on your specs

-  Implement, test, and document

  In assignement 6

-  Your partner and you will agree on a spec

-  One person writes the code

-  Other person prepares black-box tests

-  And then you switch

23 CSE 303 - Winter 2010

Readings

  No readings

24 CSE 303 - Winter 2010

