
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 2 – Filesystem, processes, users,
and command line

Class Mailing List and HW1

•  You should have received an email from me yesterday
about assignment 1

•  If you did not receive this email, let me know

•  After today, you will know enough to start HW1

•  You will need next lecture to finish it

`2

Where We Are

  It's like we started over using the computer from
scratch

  And all we can do is run dinky programs at the
command-line

  But we are learning

-  A model: filesystem, processes, users

-  A powerful way to control it: the shell

  Last time: filesystem and shell basics

3

Some Useful Commands

  Navigating directory structure: cd,pwd,ls

-  Relative path: cd ../cse303

-  Absolute path: cd /home/username/cse303

  Manipulating files: mv, cp, rm

  Manipulating directories:

-  mkdir, rmdir, cp -r, rm -rf

  Viewing file content: cat,head,tail,less

  Changing permissions: chmod

-  Example: chmod -R go-rw .

-  Linux Pocket Guide p.37 and later!
4

Outline for Today

  The rest of the model

-  Users

-  Programs and processes

  The power of the shell (just the beginning)

-  Special characters: file metacharacters

5

Users

  One filesystem and one operating system

  But many users

-  home directory, permissions, whoami,quota

-  change permissions with chmod
  You can use it to make your homework unreadable by others ;-)

-  one “superuser”: root (administers machine)

-  Different users can access the same physical
machine at the same time (e.g., four attu machines)

6

At login

  /etc/passwd guides the login program

-  Verifies user name and password

-  Sets some environment variables: HOME, PATH

-  Launches the appropriate shell

-  The shell then takes over with startup scripts

-  /etc/profile

-  ~/.bash_profile

  But passwords are in /etc/shadow

-  Why? Hint: compare permissions on these files

-  If we made /etc/passwd NOT world readable, ls would
display user IDs instead of names and other such problems

7

Tailoring Your Shell Behavior

  Create and edit files .bashrc and .bash_profile
  In hw1, we give you a .bash_profile that

runs .bashrc, so you only need to modify the latter

  Those files must be placed directly in your home directory

  Use Linux Pocket Guide (LPG) to lookup difference
between .bashrc and .bash_profile

  .bash_profile executes when logging in

  .bashrc executes when opening a new shell

8

Tailoring Your Shell Behavior

  You can put almost anything you want in these files

  Common use is to define aliases and environment variables

  To declare a variable and assign a value:
  MYVAR=value

  To make variable available to subshells and programs

  export MYVAR

  Short hand: export MYVAR=value

  Two examples
  export CLASSPATH=~/lecture2/hello.jar

  export CLASSPATH=$CLASSPATH:~/lecture2/hello.jar

  We will learn more about shell variables in next lecture

9

Processes

  A running program is a process

  An application may run many processes

  The shell runs a program by

-  “Launching a process”

-  Waiting for the process to finish

-  Giving the prompt back

  A running shell is just a process that kills itself when
interpreting the exit command

  GUIs are just a type of application

10

Program Options

  Most programs have options

  Single-letter preceded by a single hyphen

rm –r –f *

rm –rf *

  Or long options preceded by 2 (or 1) hyphens

ls --color

  Some commands support both

grep –c cat *.txt

grep ––count cat *.txt

11

Discovering Available Options

  Program man takes a program name and displays
the manual page or manpage

  Standard option –help

-  Prints usage and exits

-  Often programs print usage when given bad options

  Resources on the Web

-  Google is your friend

12

Controlling Processes

  Possible to run a program in the background

-  C-Z, fg, bg, &

  Viewing processes and killing them

jobs, ps, top, kill, ^C

13

Summary of System Model

  Filesystem: tree of directories and files

  Users: home directory, permissions

  Processes that

-  Perform some useful work

-  Perform Input/Output (I/O)

-  Interact with devices: monitor, keyboard, network

-  Launch other processes

-  Create and modify files or directories

  The operating system manages all these

14

The Shell: What We Know So Far

  Program that interprets commands and initiates
their execution

  Additionally, the shell has a state

-  Current working directory

-  Current user, her home directory, etc.

  Builtins: commands provided by the shell

-  cd, exit, echo, source, alias

-  Give directives to the shell

-  Change the state of the shell

15

File Metacharacters

  The shell provides powerful features to make the
user’s life easier: i.e., speed-up the user’s work

  One such feature is to provide file metacharacters

  The shell performs various expansions and
substitutions before invoking a program

  Example: ls -l *.txt

  Why file metacharacters?

-  On the command line: save typing

-  Inside scripts: flexibility (ex: email all pictures)

16

Expansions

  Brace expansion

-  Example: mkdir hw1/{old,new,test}

-  Creates: hw1/old, hw1/new, hw1/test

  Tilde expansion (expansion of ~ character)

-  Home directory of user bob: ~bob

-  Current user's home directory: ~

  Filename expansion: *, ?, [

-  Replace pattern with list of matching file names

17

Pattern Matching

  Any string, including null string: *

  Any single character: ?

  Any character from set: []

-  Example [abc] or [a-c]

  Any character not in set: [!abc] [^abc]

  Special case: “.” at beginning of a file name

  Examples:

-  mv mytaxes*19* very-old

-  mv mytaxes*200[0-4]* old

18

Special Characters

How to use them without special meaning?

  Escape: \x takes following character, x, literally

  Single quotes: 'xxx' take everything literally

  Double quotes: “xxx” take everything literally
except $, `` (for command subst.), and \ if
followed by special character

  Rules on what to escape or quote are arcane

-  When in doubt, just give it a try

19

Quoting and Escaping Examples

Directory contains three files: a.txt, a*.txt, a?*.txt

> ls a*.txt

> a?*.txt a.txt a*.txt

> ls a*.txt

> a*.txt

> ls a\?*.txt

> a?*.txt

> ls “a?*.txt” or ls 'a?*.txt'

> a?*.txt

20

History Expansion

  The history builtin

  The ! special character

  !! Last command

  !n Last command starting with letter n

  …

  Speed and convenience for power users

21

Aliases

  Shorthand for frequently used commands

-  Usually put them in your ~/.bashrc

  Different from variables

  Syntax

-  Define alias: alias ls=”ls --color”

-  View alias: alias ls

-  Remove alias: unalias ls

22

Readings

  Sections from the Linux Pocket Guide

-  Same sections as last lecture

  Class website lists additional resources

23

