
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 18 – Manipulating objects and inheritance

Plan for Today

  Discuss when objects are created or destroyed

  Creating objects on the stack

  Creating objects on the heap

  Copy constructors

  Passing objects to functions
  Call-by-value vs call-by-reference

  Starting to talk about inheritance in C++

2 CSE 303 - Winter 2010

Our Simple C++ Class

Examine the Property class from last lecture

  Class definition is in .h file

  Includes member function declarations

  Can include function definitions too but not recommended

  It is better to separate the interface from the implementation

  Member function definitions are in .cc file

  Pay close attention to the constructors & destructors

  Note the access specifiers: public, private

  Note that we can use pointer this (in toString)

  How the static attribute is declared and initialized

  The use of namespaces

3 CSE 303 - Winter 2010

Memory management with Objects

  Examine the function main

  See how we can declare an object

  On the stack: p1 and p3

  On the heap: p2

  See how we can pass an object by value
  Function: by_value

  Note that we are making a copy!

  See how we can pass an object by reference

  Function: by_reference (no copy)

  Examine the output that the program produces

  Observe calls to constructors and destructors

4 CSE 303 - Winter 2010

Dynamic Memory Allocation

  In C++, dynamic memory allocation is done with new
and delete

  new

  Does not require any size specification

  Invokes the constructor of the object

  Returns a pointer of the right type

  delete invokes the destructor of the object

  Example:

Property *p2 = new Property(price,size);

delete p2

5 CSE 303 - Winter 2010

New and Delete Examples

// Simple example

int *p_int = new int;

delete p_int;

// With initialization

int *p_int2 = new int(3);

delete p_int2;

// Allocating an array

int *p_array = new int[10];

delete [] p_array;

6 CSE 303 - Winter 2010

New and Delete Examples

// Allocating an object on the heap

Property *p2 = new Property(price,size);

delete p2;

// Allocating an array of objects

// Note that we have to use the default constructor here!

Property *p2_array = new Property[10];

Delete [] p2_array;

7 CSE 303 - Winter 2010

Copy Constructor

  A copy constructor is invoked every time we create a
new object from an existing object

  Example

Property p1(price,size);

Property p3 = p1;

Invokes: Property(const Property& p1);

  Other examples: passing an object by value or
returning an object by value from a function

  If you do not provide a copy constructor, the default
behavior is a memberwise copy

  Not always what you want: shallow copy vs deep copy
8 CSE 303 - Winter 2010

Plan for Today

  Discuss when objects are created or destroyed

  Creating objects on the stack

  Creating objects on the heap

  Copy constructors

  Passing objects to functions
  Call-by-value vs call-by-reference

  Starting to talk about inheritance in C++

9 CSE 303 - Winter 2010

Inheritance in C++

  Let’s take a look at the new Property class!

  Three types: public, protected, and private

  Public inheritance is used most frequently

  Public in base class -> public in derived class

  Protected -> protected

  Private -> not accessible in derived class

  Facilitates encapsulation (information hiding)

  Protected data members are accessible from

  Member functions

  Member functions of derived classes

10 CSE 303 - Winter 2010

Base Class and Derived Class

Class Land: public Property {

…

};

  Class Land inherits from class Property

  Land is called the derived class

  Property is called the base class

11 CSE 303 - Winter 2010

Inheritance Example

12 CSE 303 - Winter 2010

Property

Land

House

Based class

Derived class

Derived class

Constructors and Destructors

  Examine the output of program estate

  Notice that the Property constructor is also called when
a Land object is constructed

  Notice that the Property destructor is also called when a
Land object is destroyed.

  Invoked implicitly by default or

  Specific constructor can be invoked explicitly

  Example: examine the constructor of class Land

  It invokes one of the constructors of Property

13 CSE 303 - Winter 2010

Function Overriding

  Derived class can override parent member function

  It simply declares a member function with

  Same name as function in parent class

  Same parameters

  Example: toString

  To access parent member function from derived
class, use the scope resolution operator

  Property::toString()

  What is the difference between overloading and
overriding?

14 CSE 303 - Winter 2010

Readings

  Carefully study the code that accompanies today’s
lecture

15 CSE 303 - Winter 2010

