
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 16 – Tools: linker, build scripts, make

Where We Are

  We are done with Linux, shell scripts, and C

  We are in the middle of learning about tools

-  Already completed: preprocessor, debugger, svn

-  Today: libraries, linker, and make

-  Still to come: C++ and software engineering

2 CSE 303 - Winter 2010

Goal for Today

  At the end of today, you should understand

-  The sequence of operations involved in building an
executable and what happens at each step

-  The goal of makefiles

-  Be comfortable writing simple makefiles

  This is not the end of the story

-  Much more to makefiles than what we will show

-  After this class, you should also learn about
autoconf, automake, and cmake

3 CSE 303 - Winter 2010

Example

  Program composed of two modules

-  Queue module: queue.c, queue.h

-  Does not have a main

-  Main program: main-queue.c (uses queue)

4 CSE 303 - Winter 2010

Reminder: Header Files

header : A C file whose only purpose is to be included.

generally a filename with the .h extension

holds shared variables, types, and function declarations

key ideas:

every name.c intended to be a module has a name.h 

name.h declares all global functions/data of the module

other .c files that want to use the module will #include “name.h”

some conventions:
.c files never contain global function prototypes

.h files never contain definitions (only declarations)

never #include a .c file (only .h files)

5 CSE 303 - Winter 2010

Back to our Example

  Program composed of two modules

-  Queue module: queue.c, queue.h

-  Main program: main-queue.c (uses queue)

-  main-queue.c uses queue

-  For this reason it will #include “queue.h”

-  Now, it has enough information to be compiled by itself

6 CSE 303 - Winter 2010

Steps Involved in
Creating a C Program

  Review from last lecture

.c file

Editor

Preprocessor Preprocessed
C file

Compiler

Executable Linker .o file

7 CSE 303 - Winter 2010

Compiling our Example

  Program composed of two modules

-  Queue module: queue.c, queue.h

-  Main program: main-queue.c (uses queue)

  Step 1&2: Preprocess and compile each .c file

-  Use option -c to produce the .o file

-  Create queue.o and main-queue.o
-  gcc -Wall -g -c queue.c

-  gcc -Wall -g -c main-queue.c

8 CSE 303 - Winter 2010

The Goal of the Linker

  Compiled code (.o file) is not “runnable”

  We have to link it with other code to make an
executable

-  Where is the code for printf and malloc?

-  Where is the code for the queue module?

-  We only included the header files...

-  Need to find that code and put it in executable

-  That is what the linker does

  Normally, gcc/g++ hides this from you

9 CSE 303 - Winter 2010

Linking Step

  Linker transforms compiled code (.o files) into
executable programs

.c file

Editor

Preprocessor Preprocessed
C file

Compiler

Executable Linker .o file

10

Example

  Program composed of two modules

-  Queue module: queue.c, queue.h

-  Main program: main-queue.c (uses queue)

  Step 1&2: Preprocess and compile each .c file

-  Create queue.o and main-queue.o

-  gcc -Wall -g -c queue.c

-  gcc -Wall -g -c main-queue.c

  Step 3: Link files together to create executable

-  gcc -o main main-queue.o queue.o

11 CSE 303 - Winter 2010

Linking Overview

  If a C/C++ file uses but does not define a function
(or global variable), then the .o has “undefined
references”

-  Note: declarations do not count, only definitions

  Linker takes multiple .o files and “patches them” to
include the references

-  Literally moves code and changes instructions like
function calls

  Executable has no unresolved references

  Linker is called ld, but we will not invoke it directly.
We will use gcc

12 CSE 303 - Winter 2010

Static Linking

  Puts all necessary code into executable

-  The .o files are no longer needed after linking

  Note: use option -static to also force the use of
static linking for standard libraries

  Example: our queue test program

-  gcc -static -o main main-queue.o queue.o

-  (try linking with and without the -static option and
see the difference in size of your executable)

13 CSE 303 - Winter 2010

Creating a Static Library

  To distribute the code for a module, it is convenient to
put it all inside a library

  Let’s try to put the code for the queue and stack inside
a library

14 CSE 303 - Winter 2010

Creating a Static Library

  Create with ar (stands for “archiver”)

-  ar rc libdata.a queue.o stack.o

-  Creates a static library named libdata.a and puts
copies of object files queue.o and stack.o in it

-  If libdata.a exists, adds or replaces files in it

  Index the archive: ranlib libdata.a

-  Same as running ar with option -s

-  Improves performance during linking

-  Order inside the archive will no longer matter

15 CSE 303 - Winter 2010

Static Linking with Library

  Linking with library libdata.a
gcc -o main main-queue.o -L. -ldata

gcc -static -o main main-queue.o -L. -ldata

  Gcc will automatically link your executable with

-  libgcc.a

-  libc.a for C

-  libstdc++.a for C++

  Compile/link with option -v to see details

16 CSE 303 - Winter 2010

Static Linking Step-by-Step

  Begin: “Set of needed undefined functions” empty

  Action for .o file:

-  Include code in result

-  Remove all defined functions from set

-  Add to set all functions used but not yet defined

  Action for .a file: For each .o in order

-  If defines a needed function, proceed as above

-  Else skip

  End: If set of needed undefined functions empty,
create executable, else error

17 CSE 303 - Winter 2010

Library Gotchas

  Position of -ldata on command-line matters

-  Discover and resolve references in order

-  So typically list libraries after all object files

  Cycles

-  If two .a files need each other, you might need

 -lfoo -lbar -lfoo ...

  If you include math.h, you'll need -lm

  Cannot have repeated function names

18 CSE 303 - Winter 2010

Summary of Building an Executable

queue.c

stack.c

main-queue.c

Source Files

Step1: Compile

queue.o

stack.o

main-queue.o

Object Files

libdata.a

Static Libraries

Step2: Create
Libraries

main

Executable

Step3: Link

libgcc.a

libc.a

...

gcc -c queue.c
gcc -c stack.c
gcc -c main-queue.c
 -I specifies location of header files

ar rcs libdata.a stack.o queue.o
gcc -static -o main main-queue.o -L. -ldata

19

Dynamic Linking

  Static linking has disadvantages

-  More disk space, more memory when programs run

  Instead can use

-  Shared libraries (extension .so)
  Link in when program starts executing

  Saves disk space and memory

-  Dynamically linked/loaded libraries (while running)

  To experiment, link main with no option or with -static,
or -shared-libgcc

-  In between commands execute: ldd main
-  Prints shared library dependencies

-  And also check the size of main

20 CSE 303 - Winter 2010

Linking and Libraries Summary

  Main steps when building executable

-  Preprocessing (specific to C)

-  Compiling

-  Linking

  Process can get complex for large systems

-  Definitely don't want to do manually each time

-  Would like to automate the process... Makefile

  Know about potential problems. Learn how to solve
them as you encounter them

21 CSE 303 - Winter 2010

Make

  Two main goals

-  Automate the build process with a script

-  When a source file changes, rebuild only what is
needed: keep track of dependencies

  Why?

-  Do not want to retype long, complex commands

-  Easier for others to build the system

-  Want to shorten build time

  Especially important for large systems

22 CSE 303 - Winter 2010

Recompilation Management

  The “theory” behind avoiding unnecessary
compilation is a “dependency graph”

  To create target t, need

-  Sources s1, s2, ..., sn

-  A command a that will create target from sources

  If t newer than all si, assume no reason to rebuild it

  Otherwise, recursive rebuild

-  If si is itself a target, check if need to rebuild it

-  If need to rebuild, use the given command a

23 CSE 303 - Winter 2010

Dependency Graph Example

main-queue.c

queue.o

stack.o

Object Files

main-queue.o main

Executable

libdata.a

Static Libraries

libgcc.a

libc.a

...

queue.c

stack.c

Source Files

queue.h

stack.h

24 CSE 303 - Winter 2010

Basic Idea Behind a Makefile

  Enables us to define targets & dependencies

  In form of triples: target, source, command(s)

target: sources (aka dependencies)
 command1
 command2
 ...
queue.o: queue.c queue.h
 gcc -Wall -c queue.c

  Warning: command lines must start with TAB

  If a command spans multiple lines, use \

25 CSE 303 - Winter 2010

Make

  On the command line

make -f nameOfMakefile target

  Defaults

-  If no -f, looks for a file named Makefile

-  If no target specified, uses first target in the file

  The make utility

-  Examines the dependency graph

-  Examines the file-modification times

-  Recursively decides what to rebuild

-  Note: make is language independent (java, c, latex)

26 CSE 303 - Winter 2010

Standard Targets

  all: make everything

all: main-queue main-stack

  clean: remove any generated files, to “start over”
and have just the source

clean:

 rm -f *.o main-queue main-stack

  Phony targets: “all” and “clean” never exist

27 CSE 303 - Winter 2010

Variables

  We have seen the basics, now let's get more
sophisticated with our Makefiles

  You can define variables in a Makefile

OBJ = main-stack.o stack.o

main-stack: $(OBJ)

 gcc -o main-stack $(OBJ)

  Help avoid error-prone duplications

-  List of object files

-  List of executables

  In make, variables are often called macros

28 CSE 303 - Winter 2010

Default Macros

  There exists a lot of default macros

  You must respect the naming conventions

  Override defaults in the Makefile

CC = gcc

CFLAGS = -Wall -g

queue.o: queue.c queue.h

 $(CC) $(CFLAGS) -c queue.c
  Override defaults with environment variables

export CFLAGS =”-Wall -g”

  View list of macros: make -p

Revenge of Funny Characters

  Internal macros

-  $@ designates the current target

-  $^ designates all prerequisites

-  $< designates left-most prerequisite

  Pattern rules

%.o: %.c

 $(CC) $(CFLAGS) -c $<
  Basic ones already defined

-  They are called implicit rules

Dependencies

  Our Makefile is starting to look quite elegant

  But, we are still listing dependencies manually

-  Keeping track of dependencies is hard

-  It is easy to forget some header files

  This is not make's problem

-  Make has no understanding of programming
languages. It only understands rules

  Because this is error-prone, there are often
language-specific tools that can keep track of
dependencies for you

Dependency-Generator Example

  gcc –MM [src files]

-  Useful variants include -M and -MG (man gcc)

-  Automatically creates a rule for you

-  One approach, run via a phony depend target

depend: $(SRC)
 $(CC) -M $^ > .depend
-  Then include the resulting file in your Makefile

include .depend

  makedepend combines many of these steps

  Read more if you are interested in this topic

Installing Program from Source

  You don't need to know this for the class

  Typical four steps when installing software

autoconf (sometimes setup script instead)

configure ––prefix=/where/to/install/

make

make install

  Configure script: defines variables needed in the
Makefile, performs various checks before compiling

  Configure script has many options so try

configure --help

Readings

  Programming in C

-  Chapter 15 and Appendix C

  Make/Makefile tutorials

-  http://www.gnu.org/software/make/manual/make.html

-  http://www.eng.hawaii.edu/Tutor/Make/

  Extra references: man pages for gcc, ranlib, ar, ld

  In the future (no need to read for this class)

-  autoconf/automake: http://www.gnu.org/manual/

-  cmake: http://www.cmake.org/

34 CSE 303 - Winter 2010

