
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 12 – Structs and Heap

What We Have Seen So Far

Introduction to C

-  Structure of a C program

-  Memory model of a process

-  Pointers and the stack
  Pointers to basic data types

  Arrays and strings

  Passing arguments to functions (including pointers)

-  Formatted input and output
  Writing formatted data to stdout, stderr, or a file

  Reading formatted data from stdin or from a file

Tools: debugger and version control system

2 CSE 303 - Winter 2010

Where We Are Going This Week

  Defining new data types

-  Structures in C

-  Converting between types: typecasts

  Dynamic memory management

-  The heap

-  Building, maintaining, destroying data structures

  Example: lists, queues, trees

3 CSE 303 - Winter 2010

Structure Definition

  A structure is a “collection of related variables
under one name”

struct sensor_reading {
 long timestamp;
 char location[20];
 int temperature;
};
-  The related variables can be of different types

-  So a structure is basically a record

-  Often a building block for more complex data
structures: linked lists, trees, queues, etc.

4 CSE 303 - Winter 2010

Structure Variables

  Method 1 to declare structure variables

The code on the previous slide followed by

struct sensor_reading v;

struct sensor_reading a[2];

struct sensor_reading *p;

  Method 2 to declare structure variables

struct sensor_reading {

 long timestamp;

 char location[20];
 int temperature;

} v, a[2], *p; 5 CSE 303 - Winter 2010

Structure Variables

  Method 3 to declare structure variables

typedef struct sensor_reading Reading;
Reading v, a[2], *p;

  Keyword typedef serves to define synonyms
(aliases)

  Creating the structure and type in one statement

typedef struct {

 long timestamp;
 char location[20];
 int temperature;
} Reading;

6 CSE 303 - Winter 2010

Using structs

Initializing: Reading v = {1002,“EE037”,67};

Accessing fields

v.timestamp = 1002;

Reading *p = &v;

(*p).timestamp = 1002;

Shorthand notation: p->timestamp = 1002;

•  Reminder: When passing a struct to a function as argument, we
will pass a copy of that struct (called “passing by value”)

Examples: struct.c, struct-functions.c

7 CSE 303 - Winter 2010

Types in C

  There are an infinite number of types in C, but only
a few ways to create them:

-  char, int, double, etc.

-  void (no data type, absence of data type)

-  struct T

-  arrays

-  t*, where t is a type

-  union, enum (not covered, read on your own)

-  function pointers (extra credit question on hw4)

-  typedefs (just expand to their definitions)

8 CSE 303 - Winter 2010

Unary Type Cast Operator

  Goal

-  Convert an expression from one type to another

  Syntax:(t)e

-  Where t is a type and e is an expression

  Examples

int a=3; float b=4.3; long l=LONG_MAX;
printf("%d %f ",(int)b,(float)a);
printf("%ld %hu",l,(unsigned short)l);
  Output: 4 3.000000 2147483647 65535

9 CSE 303 - Winter 2010

Casts Semantics

  Semantics depend on what you are casting

  Casting between numeric types

-  To wider type, get same value

-  To narrower type, may not (will get mod)

-  From floating point to integer (will round)

  Casts are explicit conversions

  There are also a lot of implicit conversions

-  Example: int a = 3.0 * 1;

-  Other example are arguments in function calls

10 CSE 303 - Winter 2010

Casting Pointers

  If e has type t1*, (t2*)e is a pointer cast

-  After casting, still pointing to the same location in memory

  Example

int array[10];

int *p1 = &array[1]; int *p2 = &array[2];

printf(“%d “, p2 – p1); // Output: 1

printf(“%d”, (char*)p2 – (char*)p1); // Output: 4

  Note: compiler will let you do what you want without checking

  Casts are thus unsafe and can set your computer on fire

  Examples: cast.c

11 CSE 303 - Winter 2010

Memory Management

  So far, space for all our variables was allocated on
the stack (except for global variables)

  Problems

-  Space is reclaimed when allocating function returns

-  Variables have fixed size

  What if would like to

-  Allocate space and keep it between function calls

-  Create data structures that grow & shrink with time

  Solution: need to use the heap

12 CSE 303 - Winter 2010

Address Space of a Unix Process

static data (globals)
(data segment)

code
(text segment)

stack
(dynamically allocated)

heap
(dynamically allocated)

0x00000000

0xFFFFFFFF

Address space

Address space
is just array of
8-bit bytes

Typical total
size is: 232

We will
assume that
integer is 4 bytes

A pointer is
just an index
into this array

13 CSE 303 - Winter 2010

Dynamic Memory Management

void* malloc(size_t size);

-  Allocates a chunk of memory on heap

-  Returns pointer to chunk or NULL

free(void* ptr);

-  De-allocates chunk of memory previously allocated with
malloc

  Examples: struct-dynamic.c

  Note:

-  In Java new C(...) also uses the heap

-  Garbage collector takes care of freeing space

14 CSE 303 - Winter 2010

Simple Example

// Allocate a chunk of memory

Reading *p = (Reading*)malloc(sizeof(Reading));

// Check if allocation succeeded

if (!p) { ... }

// Initialize and use allocated chunk of memory

pointer->ts = 10;

pointer->temp = 70;

// Free the chunk of memory

free(pointer);

pointer = NULL;

15 CSE 303 - Winter 2010

Example 2: Growable Arrays

  Step 1: Dynamically-allocated array of size X

Reading *a=(Reading*)malloc(X*sizeof(Reading));

  Step 2: Growing the array

-  Step 2.1 Allocate a new, larger array

-  Step 2.2 Copy all elements

-  Step 2.3 Deallocate old array

  Example growing-array.c

  Further reading: calloc and realloc

16 CSE 303 - Winter 2010

Readings

  Programming in C

-  Chapter 9 “Working with Structures”

-  Chapter 14

  Section on “Typedef Statement” (pp 325-327)

  Section on “Data Type Conversions” (pp 327-330)

-  Chapter 17

  Section on “Dynamic Memory Allocation” (pp 383-388)

17 CSE 303 - Winter 2010

