CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska (a.k.a. “Magda”)
Winter 2010
Lecture 1 — Course Introduction

The Goal of 303

o Learn to write cryptic stuff like this (1 week)

if [$# -1t 3] then ... f1i
f1=S1,;, £f2=S2
if [[—a "Sf1" && —-a "Sf2" 1] then ... fi
o Or like that (3 weeks)
char ** ans = (char**)malloc (height*sizeof (char¥*));
int 1i;
for (i=0; 1 < height; ++1i)
ans[i] = (char*)malloc(width*sizeof (char));

« And say things such as

“I checked out the project but could not commit my changes
because the subdirectory in cvs was not group writable.” (a
few weeks)

More Seriously...

Main Goals of CSE 303

o Put you on the path to becoming a mature and
efficient software developer

« Make your life easier in subsequent classes,
internships, research projects, and jobs

« Raise your sensibility to the societal and ethical
implications of software systems

o In the past, software developers had to acquire on
their own the skills and concepts taught in cse303

Outline for Today

Class mechanics

- Staff and resources
- Lectures
- Assignments and evaluation

o Overview of topics and class schedule
o General advice
o Introduction to Linux, the filesystem, & shell

CSE 303 - Winter 2010

Class Resources

o YOour number 1 resource: course website

http://www.cs.washington.edu/303/

« Mailing list: announcements and other info
- You should already be registered to the list

» Staff: office hours posted on course website
- Michael Ratanapintha (TA)
- Magdalena Balazinska (instructor)

o Computing resources: undergrad lab
« Message board: link on course website

Lectures

o Three lectures per week: MWF @ 10:30-11:20
- Introduce important concepts and tools
- Point to additional readings
- We do not expect you to take exhaustive notes
- Participate & jot down keywords to look-up later
- Class material posted online after lecture

- Advice: use class for concepts and documentation/books
for details

- Remember: This is a 300-level course!

Assignments

o« Due soon after content is covered in class
o Spend most of your time on assignments

o Work on each assignment in several sessions
- Because you will be using new tools...
- You will feel a constant energy drain...

- You will sometimes get stuck and need to look up
documentation or go to office hours

- Again, remember that this is a 300-level course!

- Note: We expect almost everyone to get 100%

Evaluation

25% Midterm: February 12%" in class
« 25% Final: Monday, March 15%" in class
40% Assignments: total 6

- 2 on linux, shell scripts, and utilities

- 2on Cand tools
- 1on C++

- 1 on software engineering and tools

o 10% Issue paper on society and ethics

CSE 303 - Winter 2010

More About the Assighments

All assignments can be done in groups of up to two

o Collaboration policy between groups
- Books, lecture notes, manpages, the web
- You can point each other to documentation
- BUT each team must produce their own solution
- You may NOT look at solutions of other groups

o Late policy: total of three late-days that you may
use anytime in chunks of 24 hours

o Extra credit: small effect on your grade

Overview of Assignment 1

« HW1 will be posted on website this Wednesday
« Due date: Wednesday, January 13t

o Assignment content
- Try various programs and options
- Try a few useful shortcuts
- Try using man and Google
- Write a simple shell script

o Use office hours this week or next week for help
logging in and getting started!

Where to Go for Information

o Required texts:
- Linux Pocket Guide by Daniel J. Barrett, O'Reilly, 2004.
- Programming in C (3 Edition) by Stephen G. Kochan,
Sams Publishing, 2005.
Course website

- Lecture notes
- Links to additional documentation

o A lot of information is available on the web

« Manpages

That's it for the class logistics...
now let's take a look at the class content

Five High-Level Topics

o Expedite and automate tasks
- Become familiar with Linux and various utilities
- Manipulate files and strings
- Write shell scripts: bash

e Learn to programin C
- “Lower level” than Java
- Emphasis on memory management and pointers
- A little bit of C++ to get you started
- A taste of threads and concurrency control

Five High-Level Topics

o Learn basic tools for software development
- Build tools (compiling, linking, and automating)
- Debuggers
- Version control systems
- Profilers (if we have time)

o Acquire basic software engineering concepts
- Specifications, interfaces, and testing
- Multiperson programming
- Security and defensive programming

Five High-Level Topics

o Societal and ethical implications of software

- Because technology affects society

- As professionals/scientists/engineers, we must
understand societal implications of what we do

- 4 in-class discussions
- Topic will be announced before the class

- Examples: software patents, digital privacy, digital
rights management, electronic voting, etc.

Course Schedule

o Posted schedule subject to small changes

o Visit course website regularly

General Advice

o We will continuously learn new tools

- We will barely scratch the surface for each tool
- The goal is to get you started and help you learn
- You may constantly feel a certain unease

o Lectures alone are not enough
- Books and documentation provide details

- Assignments give you practice

o Work on class a little bit after each lecture
- Assignments due soon after we cover material!

- Enjoy it when you get something to work!

The Good News

o We assume you don't know much, just some Java
programming and some simple data structures

o S0 ask questions

e Now is the best time!

Summary

o Goal: maturity and efficiency
- Command-line
- C/C++
- Programming tools
- Software-development concepts
- Social/ethical implications of computing

o This class is just the beginning

o You will learn throughout your career

That's it for the class introduction.
We have a lot to cover this quarter...
so let's get started

Operating System

* Operating system: Manages activities and resources of a
computer:

— Software that acts as an interface between hardware and user
— Provides a layer of abstraction for application developers

* Features provided by an operating system: n
— Ability to execute programs (and multi-tasking) 4

— Memory management (and virtual memory) R

— File systems, disk and network access _"_
— An interface to communicate with hardware e

— A user interface (often graphical) | L3

Hardw are

http://en.wikipedia.org/wiki/Operating_system

* Kernel: The lowest-level core of an operating system

Linux

* Linux: An operating system based on the linux kernel

— Unix-like
— Commonly seen/used today in servers, mobile/embedded devices, ...

* A full Linux operating system usually comprises
— Utilities and libraries from the GNU Project

— The X Window System
— The GNOME and KDE desktop environments

— The Apache HTTP Server
* Distribution: A pre-packaged set of Linux software
— Examples: Ubuntu, Fedora

* Key features of Linux
— Open source software: source can be downloaded

— Free to use
— Constantly being improved/updated by the community

Let's Start at the Beginning

First, log in with user name and password

You will get a shell

What is a shell?

- Program that works with the OS as a command
processor, used to enter commands and initiate their
execution.

Typically, a command is a program name with
options and argument: 1s -al dirA

The shell also provides “built-in” commands:
cd

Exploring the Filesystem

o The filesystem is a tree (rather a dag)
- Thetopis /
- Interior nodes are directories
- Directories contain files and subdirectories
- Moving around: cd
- Got lost? 1s and pwd

e Each user has a home

- Typically itisin: /home/username/
- But it can be somewhere else

Continuing to Explore...

o Special directory names
- Root directory = /
- Current (working) directory = .
- Parent directory = . .
- User's home directory =~

o Paths

- Absolute pathname starts from the root
/home/username/dirA

- Relative pathname starts from current directory
~/dirA or ../dirA

Permissions

o Permissions (read, write, execute)
- Your user name determines your permissions
- Different permissions for a user and for everyone
- Users sometimes work together in a group
- Changing permissions: chmod

Basic File Manipulation

o Examining files
cat, head, tail, less

o Creating and destroying
- Files: cp, mv, rm, rm -f

- Directories: mkdir, rmdir, mv, cp -r

Commands and Programs

It helps to remember important commands

- 1ls, cd, pwd, cp, mv, rm, mkdir,...

o« Many commands correspond to programs
- 1ls, pwd, cp, mv, rm, mkdir

o« Some commands are shell “builtins”
- cd, echo, exit
« Use type to distinguish them

A running program is a process
- (could be more than 1)

Why Use a Shell?

« | can do all this with a GUI. Why use a shell?
o Power users can go faster with a shell

o Simpler and faster when logging in remotely
o Enables task automation: programmability

o Enables customization of linux session
o Most computer scientists use both
o Windows and Linux provide both

Shell Scripts

o Series of individual commands combined into one
executable file form a shell script

o Shell is an interpreter for a programming
language of the same name
- Variables
- Some prog. constructs: conditional, loops, ...
- Integer arithmetic
- etc.

Readings

o Sections from the Linux Pocket Guide
- What's in This Book (pages 1-5)
- Getting Help (pages 7-8)
- In the Filesystem section

« Introduction (page 13)
« Home Directories (pages 14-15)
o File Protections (pages 19-20)

- The Shell (pages 19-33)
o Skip subsection on Installing Software

- Pages 37-46 give more details about the commands
that we used today

